¥28-6601-1

Program Logic

IBM System/360 Operating System
FORTRAN IV (E)

Program Logic Manual

Program Number 360S-F0-092

This publication describes the internal
design of the 1IBM System/360 Operating
System FORTRAN IV (E) compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro-
gram maintenance, and Ly system programmers
involved in altering the program design.
Program 1logic information is not necessary
for program operation and wuse; therefore,
distribution of this manual is limited to
persons with program maintenance or modi-
fication responsibilities.

RESTRICTED DISTRIBUTION--SEE ABSTRACT

PREFACE

This manual 3is organized into three
sections. Section 1 is an introduction and
describes the overall structure of the
compiler and its relationship to the oper-
ating system. Section 2 discusses the
functions and logic of each phase of the
compiler. Section 3 includes a series of

flowcharts that show the relationship among
the routines of each phase. Also provided
in this section are phase routine director-
ies.

Appendixes at the end of +this publica-
tion provide information pertaining to:
(1) source statement scan, (2) intermediate
text formats, (3) table formats, (4) main
storage allocation, etc.

Prerequisite to the use of this publica-
tion are:

IBM System/360 Operating System: Princi-
ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN
IV _(E) Lanquage, Form C28-6513

IBM System/360 Operating System: Intro-
duction to Control Program logic, Pro-
gram Logic Manual, Form Y28-6605

IBM System/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603
(sections "Job Processing"” and
"Cataloged Procedures")

Second Edition

This is a major revision of, and obsoletes,
7228-6601-0). Significant changes have been made
This edition should be reviewed in its entirety.

Although not prerequisite, the following
documents are related to this publication:

IBM System/360 Operating System: FORTRAN
IV (E) Library Subprograms, Form
C28-6596

IBM System/360 Operating System: Sequen-
tial Access Methods, Program Logic Manu-
al, Form Y28-6604

IBM Systemn/360 Operating System: Con-
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Linkage

Editor, Program Logic Manual, Form
Y28-6610
IBM System/360 Operating System: Data

Management, Form C28-6537

IBM System/360 Operating System: System
Generation, Form C28-6554

This compiler is similar in design to
the IBM System/360 Basic Programming Sup-
port FORTRAN IV Compiler.

Form Y28-6601-0 (formerly
throughout the text.

Significant changes or additions to the specifications contained in this

publication will be revisions

Newsletters.

reported in subsequent

or

Technical

This publication was prepared for production using an IBM computer to

update the text and to control the page and Lline
impressions for
Printer using a special print chain.

of IBM publications

Requests for copies

format. Page
photo-offset printing were obtained from an IBM 1403

should be made to your IBM

representative or to the IBM branch office serving your locality.

A form is provided at the back of this
comments. If the form has been removed,
IBM Corporation, Programming Systems Publications,

PO Box 390, Poughkeepsie, N. Y. 12602

publication

for reader's
comments may be addressed to
Department D58,

SECTION 1: INTRODUCTION . o« o « o .

The Compiler and Operating System/360
The Interface Mcdule.
System Macro-Instructions

Compiler Organization. . «

Communication Among Comgiler Phases.
The Communicaticn Area.
Intermediate Text « « o« +« « « « .
Resident Tables . . ¢« &« ¢« & o « .

Compiler Control Flow. . . « . « « &«
Compiler Input/Cutput Flow. . . .

Compiler Output -- The Object Module

Compiler ComponentS. « « « o« « « o« o«
Phase 1 & ¢ ¢ ¢ ¢ o ¢ o« o o o o &«
Interface Module. « . .
Print Buffer Module
Performance Module.
Phase 7 o o o o ¢ o o @« « o« o« « «
Phase 10D . & v v 4 4 ¢ ¢ o o o
Phase 10E & & ¢ ¢ & o o 2 o o o« «
Interlude 10E <« ¢ ¢ o o o o o o «
Phase 12. o ¢ 4 ¢ o o o o o o o =
Phase 1. o ¢ v ¢ o« @ o o o o o« =
Interlude 14. . . ¢« ¢« ¢« & <« « . .
PhaSe 15. o« « o o « o o o o o «
Interlude 15. . & ¢ &« ¢ o o o« o
Phase 20. ¢ & v ¢ o ¢ ¢ o« o o o
Phase 25. ¢« ¢ ¢ ¢ a o o ¢ o o o
Source Symbol Module.
Okject Listing Module
Phase 30. o &« «c ¢ v 4 o o o o o @

SECTION 2: DISCUSSION OF COMPILER
PHASES.: ¢ o o o o o o ¢ o « o o s »

Phase 1 (IEJFAAAO/IEJFAABO).
Initial Entry . . « <«
Loading the Interface Module

Loading the Print Buffer Nodule
Processing Compiler Options. .
Loading the Performance Module
Orening Required Data Control
BlOCKS. « « ¢ ¢ o o o o o o =
Loading Phase 7. « « « ¢ o« o &
Subsequent Entries.
Initiating a New Compilation .
Terminating the Comrpilation. .

Phase 7 (IEJFEAAD) . v v ¢ o o o« o &
Oktaining Main Storage. «
Allocating Main Storage

For SPACE Compilations
For PRFRM Compilations
Resident Table Construction . .

Dictionary and Overflow Table
SEGMAL o o o« ¢ o o ¢ o « o =

CONTENTS

Patch Table.
Blocking Table and BIDL Table. .

Phase 10D (IEJFGAAOD) . . . ¢ <« v « o .
Intermediate Text Preparation . . .
Construction of Dictionary and

Cverflow Table Entries

Phase 10E (TEJFJBAA0) « v o o o o o o o
Internediate Text Preparation . . .
Ccnstruction of Dictionary and

Cverflow Table Entries

Phase 12 (IEJFLAAO). o« « « = « o o o
Address Assignment.
Equivalence Statement Processing. .
Branch List Takle Preparation . . .
Card Image Preraration.

Phase 14 (IEJFNAAO). ¢ « & ¢ = o « &
Format Statement Prccessing
READ/WRITE Statement Processing .
Replacing Dictiocnary Pointers . .
Miscellaneous Statement Proce551ng.

Phase 15 (IEJFPARAO). . ¢ v & « & o o «
Recrdering Intermediate Text. . . .
Mcdifying Intermediate Text
Assigning Registers . . « . « . . .
Creating Argument ILists
Checking for Statement Errors . . .

Phase 20 (IEJFRBAO). . v o o« o o o o «
Prccessing of Statemrents That
Require Sukscript Optimization . .
Processing of Staterments That
Affect, But Do Not Require,
Subscript Optimization
DO and READ Statements . « « « «
Referenced Statement Numbers . .
Subprograrmr Argurment. . . . o« .
Creating the Argument List Table. .

Phase 25 (IEJFVAAQ). . . « e e
Generation of Okbject Module
Instructions o

Completion of Otject Module Tables.
Branch List Table for Statement
Numbers « o e o
Branch List Table for SF
Expansicns and DO Statements. .
Base Value Table . « « « . . <« .

Phase 30 (IEJFXAAO). <« ¢ & o o o« o o «
Producing Error and Warning
Messages e e o o o o
Prccessing the END Statement. « e

SECTICN 3: CHARTS AND ROUTINE
DIRECTORIES &« o« o « o « o o o« o o s «

23
23

24
24

25

25
26

26

39

39
39

40
40
40

41

APPENDIX A: DATA CONTROL BLOCK

MANIPULATION. ¢ <« o o o o o o o = «
For SPACE Compilaticns. . . « . .
For PRFRM Compilations.

APPENDIX B:
MODULES ¢ ¢ o o « o o o = o o =
Allocation Table. . « « . . .
Routine Displacement Tables .
Equivalence Table . .
Forcing Value Tatle .
Operations Table. . .
Subscript Table . . .
Index Mapping Table . .
Eriloy Table.
Message Length Takle. .

Message Address Takle
Message Text Takle. .

APPENDIX C: RESIDENT TABLES
The Dictionary. « « « « « « « « =
Phase 7 Processing « . « « « «
Phases 10D and 10E Processing.
Phase 12 Processing. . « « « .
Phase 14 Processing.
Dictionary Entry Format. . . .
The Overflow Takle. . . « « « . .
Organization of the Overflow
Table . « . . . o e e .
Construction of the Overflow
Table « . .
Use of the Overflow Table. o
Overflow Takle Entry
SEGMAL. « « o o o o o o o o o o
Phase 7 Prccessing « « « «
Phases 10D and 10E Processing.
Format of SEGMAL . « .+ « « = &

Patch Table . .« ¢ « ¢ &« ¢« ¢ ¢ « &
Blocking Table. . ¢« « « ¢« « « « .
BIDL Table. « ¢ ¢ o ¢ o o o o« « =

APPENDIX D: INTERMEDIATE TEXT . . .
An Entry in the Intermediate Text
Adjective Code Field « « « . .
Mode/Type Field.
Pointer Field.

An Example of an Intermediate
Text ENtry. « « o« ¢« o ¢ o o «
Unique Forms of Intermediate
Texte o ¢ o ¢ o o o @ « o
Modifying Intermediate Text
Phase 14
Phase 15 « « . .
Phase 20 o o« ¢ o o o o &

-

APPENDIX E: ARRAY DISPLACEMENT
COMPUTATION . <« « o « o = o «
One Dimension . . « « « . .
Two DimensionSe. « o« « o «
Three Dimensicns. « « « . .
General Sukscript Form .
Array Displacement . . .

TABLES USED BY PHASE LOAD

s o o s & &

T S Y Y

L] . 3 . .
x o
o o

s 4 s e
@
[y

.104
.104
.104
.104
.105
.106

APPENDIX F': TABLES USED BY THE OBJECT
MODUIE: 2« « « « o « o« o o o o o o o o
Branch List Table for Referenced
Statement NUmLersS. « « « « o o o &
Branch List Takle for SF Expansions
and DO StatementsS. . « « « « « o o
Argument List Table for Subprogram
and SF CallS « « « o o o o o o o o
Base Value Table. « . . .

APPENDIX G: OBJECT-TIME LIBRARY
SUBPROGRAMS ¢ <« @« o« o o o = o s o o o
JHCFCOME: o o o o o o o o o o o o &
READ/WRITE Routines.
Examples of IHCFCOME READ/WRITE
Statement Processing. . « « <« .
I/0 Device Manipulation Routines
Write-to-Operatcr Routines
Utility Routines
ITHCFIOSH. . .
Table and Blccks Used.
Buffering.
Comrmunication With the
Program
operation. « « « « « &
IHCIBERRe ¢ « « o o o o @

-
-
-
-
.

s s s (N o
[¢]

e« s 2 e s 0 o
ot

s e s K e s e s e
]

s & & |=e & s s

APPENDIX H: LINKAGES TO THE INTERFACE
MODULE AND THE PERFORMANCE MODULE . .
Linkage to the Interface Module . .
Input/Output Request Linkage . .
End-Of-Phase/Interlude Request
Linkag€ « o ¢« ¢ o o o o o o

Patch Requests« .
Print Control Operations . . .
Linkage to the Performance Module
Input/Output Request Linkage .
End-Of-Phase Request Linkage .

APPENDIX I: DIAGNOSTIC MESSAGES AND
STATEMENT/EXPRESSION PROCESSING . .
Diagnostic MessagesS « « « « « .
Informative Messages
Error/Warning Messages . . .
Statement/Expression Processing

APPENDIX J:
Fcr Srace
Foxr PRFRM

MAIN STORAGE ALLOCATION
Ccrpilations. « « « «
Ccmpilations. « « - «

AFPENDIX K: COMMUNICATION AREA
(FCCMM) &« & @ v o« o o o o a o o o o

APPENDIX L: SOURCE STATEMENT SCAN . .
PreliminaXy SCaNe « « « o « « o o =
Classification Scan « « « « o « « &
Reserved Word or Arithmetic Scan. .

GIOSSARY &« o ¢ « 2 2 2 @ s o o o« = o« =

INDEX: =« o 2 o ¢ o o o o o o« o« o o o =

.107
.107
.107

.108
.108

.109
.109
.109

.113
.115
.115
-116
.121
<121
.123

.123
.123
.128

130
.130
<130

.130
.131
.131
.131
.131
.131

<132
.132
.132
.132
.134

<137
.137
.139
.140
.143
.143
.143
144
. 147

.151

Figure 1. Compiler Ingput/Output
Structure 00 0 e

Figure 2. Compiler Input/Output Flow.
Figure 3. Creation of Object Module .
Figure 4. Phase 10D Data Flow
Figure 5. Phase 10E Data Flow
Figure 6. Phase 12 Data Flow.
Figure 7. Phase 14 Data Flow.
Figure 8. Phase 15 Data Flow.
Figure 9. Phase 20 Data Flow. « « . .
Figure 10. Phase 25 Data Flow
Figure 11. Phase 30 Data Flow
Figure 12. Data Control Block

Manipulation for SPACE Compilations .
Figure 13. Data Control Block
Manipulation for PRFRM Compilations .
Figure 14. Allocation Table Entry
FOormate « ¢ o o ¢ o ¢ ¢ o o o « o« o =
Figure 15. Phase 10D Routine
Displacement Table Format
Figure 16. Phase 10E Routine
Disglacement Table Format
Figure 17. EQUIVALENCE Table Entry
Format. « « ¢ & ¢ ¢ ¢ 4 o ¢ o o o o @
Figure 18. Forcing Value Takle. . . .
Figure 19. Operations Table Entry
FOrmate « o« o o« o o o o e« o o o o o

Figure 20. Subscript Table Entry
Format. « o ¢ o o ¢ ¢ ¢ ¢ ¢ ¢ o 4 o
Figure 21. Index Mapring Table Entry

FOXMAte « o « o o o o o o o o o « o @
Figure 22. Epilog Takle Entry Format.
Figure 23. The Dictionary as

Constructed by Phase 7.
Figure 24. Removing an Entry From the

End of a Dictionary Chain
Figure 25. Removing an Entry From the

Middle of a Dictionary Chain.
Figure 26. General Form of a

Dictionary Entry.
Figure 27. Function of Each Subfleld

in the Dictionary Usage Field
Figure 28. The Various Mode/Type

Combkinations. e o e e e
Figure 29. Phases That Enter

Infcrmation Into Specific Fields of a

Dictionary Entry.

Figure 30. The Overflow Table Index
as Constructed by Phase 7

76
17
77

78
78

79
79

79
80

82
83
83
83
84
85

85

86

FIGURES

Figure 31. Format of Dimension
Infecrmation in the Overflow Table . .
Figure 32. Format of Sukscript
Information in the Overflow Table . .
Figure 33. Format of Statement Number
Information in the Overflow Table . .
Figure 34. Intermediate Text Word
Format. « < o ¢ ¢ ¢ 4 ¢« 4 a4 4 o o o
Figure 35. Adjective Codes as Used in
Phases 10D and 10E. « & 4 « « « o « .
Figure 36. Example of Input to Phase
Ihe 4 4 0 i v i et e e e e ee e e
Figure 37. Examrple of Output from
Phase 1U. . ¢ v ¢ 4 4 v 4 4 o o o o «
Figure 38. Subscript Intermediate
Text Input Format « o e o @
Figure 39. Subscript Intermedlate
Text Output From Phase 20 -- SAOP
Adjective COA€. v ¢ 4 ¢ 4 4 4 4 4 o .
Figure 40. Subscript Intermediate
Text Output from Phase 20 -- XOP
Adjective Cod€. o« + ¢ v 4 4 o o o . .
Figure 41. Sukscript Intermediate
Text Output from Phase 20 -- AOP
Adjective Code€. v v 4 4 4 4 4 4 4o . .
Figure 42. Referencing a Specified
Element in Array. « « « « « « o o o .
Figure 43. Forrat of Branch List
Table for Referenced Statement
Numbers ¢ . ¢ 4 v 4 4 0 e . .
Figure 44. Format of Branch List
Table for SF Expansions and DO Loops.

Figure #45. Format of Argument List
Takle for Subrrogram and SF Calls . .
Figure 46. Format of Base Value Table
Figure 47. End of Phase 1 (initial
entry). . .+ v v v 4 e e e e e e ..
Figure 48. End of Phase 1 (subsequent
entries). ¢ ¢ . 4 4 4. ..
Figure 49. End of Phase 7.
Figure 50. Phases 10D and 10E, and
Interlude 10E . « ¢ ¢ ¢ ¢ o & « o o« .
Figure 51. Phases 12 and 14, and
Interlude 14. . . . « e e .
Figure 52. Phase 15 and Interlude 15.
Figure 53. Phases 20, 25, and 30. . .
Figure 54. Main Storage Allocation

for a PRFRM Compilation

. 87
. 88
. 88
. 92
- 94
. 98
. 98

.102

.103

.103

.103
.105

.107
.107

-108
.108

137

.137
. 137

.138
.138
.138
.138

.139

TABLES

Table 1. Compiler Components and
Their Major Functions « . .
Table 2. Phase 1 NMain
Routine/Subroutine Directory.
Takle 3. Phase 7 Main
Routine/Subroutine Directory.
Table 4. Phase 10D Statement
Processing. . . « e s e e e e e e
Table 5. Phase 1OD Main
Routine/Subroutine Directory. . . .« .
Table 6. Phase 10E Statement
Processing. . . e o o e s s o o =
Table 7. Phase 10E Main
Routine/Subroutine Directory.
Table 8. Phase 12 Main
Routine/Sukroutine Directory.
Table 9. Phase 14 Statement
Processing (FORMAT Statements
Excluded) « o« « o « o o o .o o o « o
Table 10. Phase 14 FORMAT Statement
Processing. . « « o o @m s e e = e o
Table 11. Phase 1u Main
Routines/Subroutine Directory.
Takle 12. Phase 15 Nonarithmetic
Statement Processing. « « « o o « o o
Table 13. Phase 15 Arithmwetic
Operator Processing . « « « « « « o
Takle 14. Phase 15 Main
Routine/Subrout ine Directory.
Takle 15. Phase 20 Nonsubscript
Optimization Processing« .+ .
Table 16. Phase 20 Sukscript’
Optimization Processing . . . « . . .

CHARTS

Chart 00. Overall Ccrgiler Control
FlOWe o « o o o o« o o o o o o o o« o =
Chart 01. Phase 1 (IEJFAAAQ/IEJFAABO)
Overall Logic Diagram « « « « « « &
Chart 02. Interface Mcdule (IEJFAGAO)
ROULINESe o v« o « ¢ o o o o s o o = @

Chart 03. Performance Module
(IEJFAPAQO) Routines
Chart O4. Phase 7 (IEJFEAAO) Overall
Logic Diagram . - . « e e o o e o
Chart 05. Phase 10D (IEJFGAAO)
Overall Logic Diagram . . . « o o
Chart 06. Phase 10E (IEJFJAAO)

Overall Logic Diagram + « . « « «
Chart 07. Phase 12 (IEJFLAAOD) Overall
Logic Diagram . . . e e e e e e
Chart 08. Phase 14 (IEJFNAAO) Overall

Logic Diagram . . . PR
Chart 09. Phase 15 (IEJFPAAO) Overall
Logic Diagram « « « o « o o o o s =« =

43
47
49
50
52
53

55

57
58
58
61
62
63
66
66

10
2
4y
45
46
48
51
54
56

60

Takle 17. Phase 20 Main
Routine/Subroutine Directory. . . « .
Takle 18. Phase 25 Statement and
Adjective Code Prccessing . . « « « =
Takle 19. Phase 25 Main
Routine/Subroutine Directory.
Table 20. Phase 30 Main -
RoutinesSubroutine Directory.
Table 21. IBCFCOME FORMAT Code
Processinge. « o« « « o o o o o « o
Takle 22. IHCFCOME Processing for a
READ Requiring a Format
Takle 23. IHCFCOME Processing for a
WRITE Requiring a Format.
Takle 24. IHCFCOME Processing for a
READ Not Requiring a Format
Table 25. IHCFCOME Processing for a
WRITE Not Requiring a Format. .« .
Table 26. IHCFCOME Routlne/Subroutlne
Directory . « « « « o & « . . .
Table 27. IHCFIOSH Routine/Subroutine
DiYXeCtOIY « « o o « = o o o o« 2 o o o
Takle 28. Operation Field Bit
MeaningSe « « « o o o o o o o » o o o
Table 29. Data Set Disposition Field
Bit Meanings. . . . e o e e e o o
Table 30. Syrbolic and Actual Names
of Ccmpiler ComponentS. « « « « + « o

Table 31. Informative Messages. . . «
Takle 32. Error/Warning Messages. . .
Table 33. Statement/Expression

Processinge « « o o« o s o o o o s o @

Takle 34. Communication Area. . . « .
Chart 10. Phase 20 (IEJFRAAQ) Overall
Logic Diagram . . . « e e .
Chart 11. Phase 25 (IEJFVAAO) Overall
logic Diagram . . . « o e . e .
Chart 12. Phase 30 (IEJFXAAO) 0verall
Logic Diagram . . . e e e e e s o e

Chart 13. THCFCOME Overall Logic

Diagram and Utility Routines.
Chart 14. Implementation of
READ/WRITE Source Statements.
Chart 15. Device Manipulation and
Write-to-Operator Routines.
Chart 16. IHCFIOSH Overall Logic
Diagram « o« « o o o o o o o o o o o =
Chart 17. Execution-time I/0 Recovery
Prccedure . « o « ¢ o ¢ o o o o o o o
Chart 18. IHCIBERR Overall Logic
Diagram o « o o o o s o o o o o o o o
Chart 19. READ Statement Scan Logic .

-111
-113
.114
114
.115
.120
.128
.130
.130
.131
.132
.132

.135
.140

. 65
. 68
. N
.117
.118
.119
.126
127

.129
.146

The IBM System/360 Operating System
FORTRAN IV (E) compiler analyzes source
modules written in the FORTRAN IV (E)

language and transforms
modules suitable for input to

them into object
the 1linkage

editor for subsequent execution on the IBM
System/360. If the compiler detects errors
in the source module, appropriate error

messages are produced.

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (E) compiler is a pro-
cessing program of the IBM System/360 Oper-
ating System. As a processing program, the
compiler communicates with the operating
system control program for input/output and
other services. A general description of
the control program is given in the publi-
cation IBM System/360 Operating System:
Introduction to Control Program Logic, Pro-
gram lLogic Manual.

A compilation, or batch of compilations,
is introduced as a Jjob step under the
control of the operating system via the job
statement (JOB), the execute statement
(EXEC), and the data definition statements
(DD) for the input/output data sets. To
keep these statements at a minimum (in the
input job stream), cataloged procedures are
provided. A discussion of the introduction
of a FORTRAN IV (E) compilation as a job
step and of the available cataloged proce~
dures is given in the publication IBM
System/360 Operating System: FORTRAN IV (E)
Programmer's Guide.

The
from a calling program

compiler initially receives control
of the operating

system (e.g., the initiator/terminator) by
means of a supervisor-assisted linkage.
Once the compiler receives control, it

maintains communication with the
system through:

operating

e The interface module

e System macro-instructions

THE INTERFACE MODULE

The interface module, a component of the
FORTRAN IV (E) compiler, resides on the
operating system 1library (SYS1.LINKLIB).

SECTION 1: INTRODUCTION

When the compiler receives control, it
loads, via the LOAD macro-instruction, the
interface module into main storage where it
remains throughout the job step. The
interface module processes all input/output
requests of the compiler. The requests are
initiated by a linkage to the interface
module. The parameters necessary for I/0
operations are passed to the interface
module via this 1linkage. The interface
module then 1links to the BSAM (kasic
sequential access method) read/write rou-
tine via the READ/WRITE macro-instruction.
(A description of BSAM and the correspond-
ing reads/write routines is given in the
puklication IBM System/360 Operating Sys-
tem: Sequential Access Methods, Program

Logic Manual.)

SYSTEM MACRO-INSTRUCTIONS

Whenever the XCTL, LOAD, DELETE, OPEN,
CLOSE, READ, WRITE, CHECK, RDJFCB, GETMAIN,
FREEMAIN, BLDL, SPIE, or TIME macro-
instruction is issued, control is given
directly to the operating system to execute
the requested service.

When the job step (a single compilation
or batch of compilations) is terminated,
control 1is returned tc the calling program
via the RETURN macro-instruction.

COMPILER ORGANIZATION

The FORTRAN IV (E) compiler consists of
several components, each of which exists as
a separate lcad module on the operating
system library (SYS1.LINKLIB). The
components are:

e Phases (1, 7, 10D, 10E,
25, and 30).
Interludes (10E, 14,
Performance module.
Interface module.
Print buffer module.
Source symbol module.
Object listing module.

12, 14, 15, 20,
and 15).

The compiler components and their major
functions are shown in Table 1.

Section 1: Introduction 7

Table 1.

Compiler Components and Their Major Functions

| I oo T 1
| COMPONENT | MAIN FUNCTION(s) | | COMPONENT | MAIN FUNCTION(s) |
| | o | |
. 1 —={ - } i
|Phase 1 l|initializes compiler | {Phase 1U | processes FORMAT and READ/ |
| (IEJFAARO) | | | (ZEJFNARO) |WRITE statements [
! R - | l '
| Interface | processes compiler I/0]| R e i
module	requests for all compila-		Interlude 14	provides additional main
(IEJFAGAO)	tions, and end-of-phase/		(IEJFNGAOQ)	storage for Phase 15
	interlude requests for			(executed only for SPACE
	SPACE compilations			compilations)
—- + ¢ } 1				
Print buffer	[contains two I/0 buffers		Phase 15	processes arithmetic
module	that are used for the		(ZEJFPARAO)	expressions
(IEJFAKAO)	SYSIN and SYSPRINT data] t 4 4			
i	sets		Interlude 15	ensures that BSAM routines
b + i	(ZEJFPGAQ)	required in subsequent		
Performance	reduces compilation time			phases are present
module	(loaded into main storage			(executed only for SPACE
(IEJFAPAOQ)	and executed only forj			compilations)
	PRFRM option) ; deblocks]	f———————————e fom e 1		
	compiler input and blocks		Phase 20 .	optimizes subscript
	compiler output if block-		(IEJFRAAOQ)	exrressions
	ing is specified; and			
	processes end-of-phase	jp———mm————e—eao +		
	requests for PRFRM compi-		Phase 25	generates object coding
	lations		(IEJFVAAQ)	
'r ¥ I e 1				
Phase 7	obtains and allocates main		Source symbol {used Ly Phase 12 to con-	
(IEJFERAAQ)	storage for resident		module	tain the names of all var-
	tables and internal text		(IEJFAXAOQ)	iakles and constants used
	buffers. (If the PRFRM			in the source modules and
[option and blocking arej		their relative addressesj		
	specified, Phase 7 alsoj		(Lcaded into main storage	
	obtains and allocates main		Jonly if the okject listingj	
	storage for I/0 buffers to			ortion is specified and ifj
	ke used by the block/			the okject listing facili-
	deblock routine of the			ty is enakbled)
	pexrformance module.)	t - 4		
—_——— + - 4	Object listing	used ky Phase 25 to gener-		
Phase 10D	transforms nonexecutable		module	ate the object module
(IEJFGAAOQ)	statements into intermedi-		(TIEJFVCAOQ)	listing (loaded into main
	ate text			storage only if the object
——— + 4		1isting option is speci-		
Phase 10E	transforms executable] {fied and if the object		
(IEJFJAAO)	statements into intermedi-			listing facility is]
	ate text			enabled)
$ it 1 !

Interlude 10E |opens data control blocks| | Phase 30 |generates error/warning|
| (IEJFIGAO) |required by Phases 12 and| | (TIEJFXARQ) |messages and processes the|
|14 (executed only for| i |END statement |

| SPACE compilations) | - } |

b + | | Phase 1 |terminates compilation (inj
|Phase 12 | processes COMMON and| | (ZEJFAABO) |the case of a batch compi~|
| (IEJFLAAO) | EQUIVALENCE statements, | | |lation, Phase 1 performsj
| |and assigns relative| | |transitional processing toj
| |addresses to variables and| | |initiate the next|
| | constants | | |compi lation)]
L 1 J . g U 4

COMMUNICATION AMONG COMPILER PHASES

When a compiler is divided into more
than one phase, communication among the
phases is required. Communication among

the phases of the FORTRAN IV (E) compiler
is implemented via:

e The communication area.
e Intermediate text.
¢ Resident tables.

THE COMMUNICATION AREA

The communication area (FCOMM) is a
central gathering area (a portion of the
interface module) for information common to
the rhases. It is used to communicate this
information, when necessary, among the
phases.

INTERMEDIATE TEXT

Source module statements (executable and
nonexecutable) are converted into an inter-
nal text format (intermediate text). This
intermediate text, once it is created, is
used as input to the subsequent phases of
the compiler. This text is eventually
transformed into machine language instruc-
tions.

RESIDENT TABLES

The resident tables are the dictionary,
the overflow table, the segment address
list (SEGMAL), the patch table, the block-
ing table, and the BILDL table. The dic-
tionary is a reference area containing
information about variables, arrays, con-
stants, and data set reference numbers used
in the source module. The overflow table
contains all dimension, subscript, and
statement number information within the
source module. SEGMAL 1is wused for main
storage allocation within the compiler.
The patch table contains information to be
used to modify compiler components. The
blocking table contains information neces-
sary for deblocking compiler input and
blocking compiler output for PRFRM compila-
tions. The BIDL table provides the infor-
maticn necessary for transferring control
from one component to the next for PRFRM
compilations. (The blocking takle and the
BLDL table reside in main storage only for
PRFRM compilations.)

COMPILER CONTROL FLOW

If the SPACE option is specified by the

user, control is passed among the compo-
nents of the compiler via the interface
module. After each component has been

executed, that corponent branches to the
interface wmodule with the name of the
component to be executed next. The inter-

face module then issues an XCTL (transfer
contrcl) macro-instruction to the next com-
ponent.

If the PRFRM orption is specified by the
user, control is passed among the compo-
nents of the ccmpiler via the performance
module. After each component has been
executed, that coxponent branches to the
perfcrmance module with the name of the
component to be executed next. If the next
component is an interlude, the rperformance
module bypasses the execution of the inter-
lude and transfers control, via the XCTL
macro-instruction, to the next phase of the
compiler. If the next component is a
phase, the performance module immediately
transfers control to that phase.

Note: The interludes are only executed if
the SPACE option is specified by the user.

(The SPACE option is chosen by the user if
the amount of main storage that is avail-
able for compilation is limited.) Each
interlude first closes the data control
blocks for all the data sets that are open,
and then opens only those for the data sets
that are required by subsequent phases.
This process decreases the size of the
currently required BSAM routines and pro-
vides the additional main storage necessary
to compile source modules in an environment

in which the amount of available main
storage is limited.
The performance module is 1loaded into

main storage and executed only if the PRFRM
option is specified by the user. (The
PRFRM option is chosen by the user if he
desires maximum compiler efficiency, and if
the amount of available main storage is not
a limitation.) A PRFRM compilation elimi-
nates the execution of the interludes. The
execution of the interludes can be bypassed
because enough main storage is available to
allow Phase 1 to initially open the data
control blocks for all the data sets that
are required for the entire compilation.
The data control blocks are closed only at
the end of the compilation. Bypassing the
execution of the interludes decreases com-
pilation time and therefore, increases
overall compiler efficiency.

The overall compiler control flow is
illustrated in Chart 00.

Section 1: Introduction 9

Chart 00.

ERNRALNANNNNNRN
* CALLING *
* PROGRAM *

*

*
RN R RR R
VIA

ASSISTED

v
HHRRIB]I N RN
* *

PHASE 1

ok
* kK ok

HREEFEFEREERTLNR

XCiTL

v
EHERED DR IE RN
* *

PHASE 7

* ok k%

*
*
*
*
*

AERRRARREERRER R

Overall Compiler Control Flow

SUPERVISOR
LINKAGE

RE| TURN

v
HXRRD2HRRERRANE
CALL ING

PROGRAM *

* %

* *
222222222

L e e s
* *

* UNCONDITIONAL ¥
| T GETMAIN
v » *
ety - B NN RN
E1l *. E2 4
ot - o *o
% ENOUGH *. NO o* SPACE *. SPACE
#MAIN STDRAGE o%*————>%, OR PRFRM %
*o ¥ . .
*g ¥ *g ¥
Hy ¥ e ¥
* YES *PRFRM
xc{TL
v
v ot
FHRRREF] HRRRNEEN NN F2 *,
* * ot *g W R J KN NR N
3 ¥ o *e YES > XCTL TO x
* PHASE 10D % %o BLOCKED I/0 o%————p¥
i M -, Broc O . PHASE 1 ot
* * *e «® ER2 22T 22 S22 2222)
FEBERERRR AR ER *, ¥
* NO TERMINATE
COMPILATION
xc{TL XCiTL
v
P RG] W RN v
* * HREEG2RERXRREER,
* * - PHASE 1 *
*# PHASE 10E * * (RESTART _ *
: : # COMPILATION) *

EREERREREREERNREN

v

a¥e
H1 *o
*

" SPACE *.

XCITL

v
HRERRYTHNRNRERNR
* *

*
INTERLUDE 10E
*

* % k%

*
W R TR T RN

<
XC|TL

v
HRERRK] RRERRRRERR
*

T e Y L

ALTER PRFRM RUN
TQ SPACE RUN

PRF RM
*e OR PRFRM - F———
* *

REERRALEEERRRRERK
* *

*
—>%* PHASE 14 *
* *
*
*

*
HEERERERERE NI RN

v
a¥e
B4 *o

" space
*o OR PRFRM
*q

XC|TL

v
FERRRCHEERERT RN
* *

*
* INTERLUDE 14
*

* Wk ok

*
HERERERRRNRRERERN

<
XCITL

v
HRRRIDGEEHERERAR N
* *

PHASE 15

* X kK
EE RS

L R e e e

¥
E4
o
. SPACE
* OR PRFRM
% .
*, ok

®e oF
*SPACE
XCPTL
v
L S e e e
* *

INTERLUDE 15

* % %

*
*
*
* *
HHRE R TR RN

<
XC|TL

v
RERERGLHE RN RRERS R
* *

* *
* PHASE 20 *
» *
* *
NN RN

v

oo

Ha *o

o* -

o* ANY *,
#.SOURCE MODULE «*
*. ERRORS %

*o o
Ko oW
* NO

.
*. PRFRM
o ¥y

HS NOLOAD

¥ *o
YES ¥ LOAD *e

>*a OR NOLOAD -
, o

XCTL
L Ny e L e e
* *

PHASE 25

* ok k%
* %k

HRRE N TR RR RN RN

*
* *XCTL
* PHASE 12 *-
* *
* *

HRARRREEERERERRNR

10

XCTL
ERRENJSERRERER RN

» *

* *
>%* PHASE 30 *<

* *

* *
R s el s

XCTL

v
HRERKSHERERERRR
*
* PHASE 1 *
* *

R e e I

NITIATE NEW COMPILATION OR

1
RETURN CONTROL TO CALLING PROGRAM

COMPIILER INPUT/OUTPUT FLOW

The source modules +to be compiled are
read into main storage by the compiler from
the SYSIN data set. The compiler uses
SYSUT1 and SYSUT2 as intermediate work data
sets. (If the buffers used for reading and
writing on these work data sets are large
enough to contain the source module, then

sets are used for the output of the compi-
laticn. (SYSLIN is used only if the LOAD
option is specified; SYSPUNCH is used only

if the DECK option is specified.)

Figure 1 shows the compiler input/output

structure.

Figure 2 shows the compiler input/output
flow and includes intermediate input to and

this data is retained in main storage.) intermediate output from the various phases
The SYSLIN, .SYSPRINT, and SYSPUNCH data of the compiler.
ey
| Source Module|
| (SYSIN) |
L J
1
| SYSUT1
| and
i SYSUT2
..... S
| Intermediate|
| COMPILER | |work data |
| le—|sets |
b e) U |
I
|
|
- T L) { T T 1
[l | | | _ o
SOURCE MAP| DECK LOAD For all com- Okjectilisting
Option Option Option Opticn pilations Option($)
r 1 i____"l r . { 1 r _-—1 1 r & 1 r - i a}
| Source | |Storage | | Object Module | | Object Module | | Error and { | Object Module |
| Module | |Map | | (Esp,TXT,RLD, | | (ESD,TXT,RLD, | | Warning | | Listing (if |
| Listing]| | | | and END card | | and END card | | Messages | | the object
| | | | | images) | | images) | | ¢tif any) | | listing facil-|
I 1| || || || | | ity is en- |
I I || | | | | abled) I
L J L J L J L 3 L ——d | —— J
SYSPRINT SYSPRINT SYSPUNCH SYSLIN SYSPRINT SYSPRINT
Figure 1. Compiler Input/Output Structure
Section 1: Introduction 11

Input to
Compiler
Components

Compiler Components

That Generate

Compiler Qutput

Output from
Compiler
Components
List of Patch Records if any,

Compiler Informative Messages
SYSIN | Pa!cii; Z:;ords Phase 7
Dictionary and .
Overflow Table Main Storage
Intermediate
Text for FORMAT, SYSUTI or Main
] FUNCTION, and | Storage
SUBROQUTINE
Statements
Declarative Statement. || Source S Listing of Declarative
arements Statements if SOURCE option is in Effect
Phase 10D
— Intermediate Text R
for Declarative SYSUT2 or Main
Statements Storage
FORTRAN Source Dictionary and . Dictionary and N
SYSIN Mcdule Overflow Table Main Storage Overflow Table Main Storage
Statement Functions and Phase 10E Intermediate Text
Executable Statements for Statement .
— Funchi SYSUT1 or Main
unctions and St
Executable oroge
Statements
Source Statement Listing of Statement
Functions and Executable Statements if
SYSUT2 or ?8&&3’252" SOURCE Option is in Effect
Main E _‘
Storage Text .
Storage Map of Addresses Assigned by ESD Card Images for Section
Phase 12 Phase 12 if MAP Option Is in Effect Definition, Entry Point,
Main Dictionary and * m External Symbols, and Entries
Storage Overflow Table in COMMON; TXT Card
d Dictionary and . Images for Dictionary
Overflow Table | Moin Storage Constants; and RLD Card
Intermediate Text images for Address Constants
SYSUT! or for Statement
Main Functions and
Storage Executable Phase 14
Statements ase SYSUT2 or Maln TXT Card Images for
Intermediate Text | Storage FORMAT Statements
forage Patch Records, Source Object Module
Module Listing, Storage (ESD, RLD, and
SYSUT2 or Modified SYSUTT or Map, Object Module TXT Card Images)
Main 1 fiate Text Phase 15 . Main Listing, and Diagnostic
Intermediate Text
Storage Storage Messages
SYSLIN
SYSPRINT and/or
Mod!ﬁed SYSUT? or SYSPUNCH
Intermediate Text |), o
SYSUTI or (Subscript Text Storage
gAain Optimized) 9
torage
Main Phase 20 .
Storage Map of External References and Generated
Storage Overflow Table . . I ESD and RLD Card Images
_j _L—L”E—m‘s if MAP Option is in Effect for Externally Referenced
Library Subprograms; and
Branch List Tables TXT and RLD Card Images
and Base Value SYSUTI or Main for Generated Literals
Table Storage and Arguments List Table
Entri.
Storage Map of Referenced Statement Numbers if MAP neries
Option Is in Effect; and Object Module Listing if
Phase 25 Obiect Listing Option is in Effect
SYSUT2 of TXT Card images for Object
Main Intermediate Text Module Instructions, and RLD
Storage Card Images for Address
Constants
N . . TXT and RLD Card Images
) Phase 30 List of Error/Warning Messages if any; and SIZE OF .
SYSUTT or | Branch List Tables COMMON, SIZE OF OBJECT MODULE Message for Branch List Tables and
Main and Base Value Table, and
Storage Base Value Table END of Object Module

Figure 2.

12

Compiler Input/Output

Flow

Indicator (Only if Phase 30
is Entered From Phase 25 -
Refer to Chart 00)

COMPILER OUTPUT -- THE OBJECT MODULE

The object module compiled from the
FORTRAN source module is not constructed in
its entirety by any one phase; the various
components of the object module are gener-
ated throughout the compilation. Figure 3
indicates what each phase contributes to
the generation of the object module. An
object module is created for use as input
to the 1linkage editor, which prepares
object modules for execution on the IBM
System/360.

consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text, and an
END statement. The external symbol dic-
tionary (ESD) contains the external symbols
that are defined or referred to in the
module. The relocation dictionary (RLD)
contains information about address con-
stants in the object module. (An address
constant designates the relative storage
address into which the address of a rou-
tine, library subprogram, or symbol is to
be relocated.) The text (TXT) contains the
instructions and data of the object module.
The END statement indicates the end of the
object module.

An object module

The okject module, after being processed
by the linkage editor, is executed on the
IBM System/360 in conjunction with the
following members of the FORTRAN system
library (SYS1.FORTLIB):

¢ THCFCOME
¢ IHCFIOSH

IHACFCOME performs object-time implemen-
tation of the following FORTRAN statements:

e READ and WRITE
e BACKSPACE, REWIND, and ENDFILE
e STOP and PAUSE

In addition, IHCFCOME converts input and
output data into the formats indicated Ly
the FORMAT statements. IHCFCOME also proc-
esses object-time errors and arithmetic-
type program interruptions and terminates
the execution of the load module.

IHCFCCME itself does not actually
perform the reading from and writing onto
data sets, or I/0 device manipulations; it
submits requests for such operations to
IHCFIOSH (the FORTRAN Input/Output System).
IHCFIOSH interprets these requests and sub-
mits them to the appropriate BSAM routines
for execution.

COMPILER COMPONENTS

The components of the compiler and their
main functions are discussed in the follow-
ing paragraphs.

PHASE 1

Phase 1 is both the first and last phase
of the compiler. Initially, the phase is
entered from the calling program (e.g.,
initiator/terminator); subsequent entries
are made from either Phase 7 or Phase 30.
In addition, if a germanent I/0 error
occurs, Phase 1 is entered from the phase
that requested the I/O operation.

OBJECT MODULE

r
|ESD card images for section definition, entry point, referenced

r | subprograms, external symbols, and entries in COMMON.

| Phase 12 }-—----+{images for constants entered in the dictionary.

TXT card
RLD card images for

e J | subprograms and external symboels.
(oo 1 -= -
| Phase 14 }f———==- +{TXT card images for FORMAT statements.
R —— 4 !

v
—————— g |ESD card images for implied external references. TXT and RLD card
(Phase 20 }p—-—--—»{images for generated literals and for entries in the argument list
O - d |table.
S
| Phase 25 }——————a{TXT card images for instructions. RLD card images for address
4 |constants.

r |TXT card images for branch list tables and base value table. RLD
| Phase 30 }——--—-aqcard images for branch list tables and base value table.
|object module indicator.

END of

TP ST SRR SRy SRS

Figure 3. Creation of Object Module

Section 1: Introduction 13

At the initial entry, Phase 1 performs
compiler initialization; that is, it 1loads
the interface module and the print buffer
module into main storage; processes compil-
er ortions; loads the PRFRM module into
main storage if the PRFRM option is speci-
fied and if the value specified in the SIZE
option is at least 17504; opens required
data control blocks; and loads Phase 7 into
main storage. Upon comgpletion of the ini-
tial Phase 1 processing, control is passed
to Phase 7.

At subsequent entries, Phase 1 initiates
a new compilation if another source module
exists, or alternatively terminates the
compilation if nc more input is present.
Control is passed to Phase 7 or returned to
the calling program, as appropriate.

INTERFACE MODULE

The interface module contains:

e The communication area
compiler comrunication).

(required for

¢ The data control blocks and data event
control blocks for the data sets wused
during a compilation (required for 1I/0
operations).

¢ The interface routines (required for
implementation of compiler I/0 requests
and end-of-phase requests, and for tem-
porary modification of compiler
components) .

PRINT BUFFER MODULE

The print buffer module contains two I1/0
buffers that are used for +the SYSIN and
SYSPRINT data sets.

PERFORMANCE MODULE

The performance module, loaded into main
storage only if the PRFRM option is speci-
fied, contains:

® An I/0 routine, which deblocks compiler
input and blocks compiler output for
PRFRM compilations.

¢ An end-of-phase routine, which controls
the transferring of control from one
component of the compiler tc the next
for PRFRM compilations.

14

e The blocking table, which provides the
I/0 routine with the information neces-
sary to deklock compiler input and to
block compiler output.

¢ The BLDL table, which provides the
end-of-phase rcutine with the informa-
tion necessary to transfer control from
one component of the compiler to the
next.

PHASE 7

Fer both SPACE and PRFRM compilations,
Phase 7 obtains and allocates main storage
for the dictionary, the overflow table, and
four internal text Luffers. For PRFRM
compilations, Phase 7 also obtains and
allocates main storage for special 1I/0
buffers to be used for deblocking compiler
input and for blocking compiler output if
blocking is specified Ly the user.

After main storage is obtained and allo-
cated, Phase 7 constructs the resident
tables to be used ky the compiler.

Upon completion of Phase 7 processing
control is passed either to Phase 10D or to
Phase 1.

PHASE 10D

Phase 10D converts COMMON and EQUIVA-
LENCE source statements into a special form
of intermediate text (referred to as COMMON
and EQUIVALENCE intermediate text) for pro-
cessing by Phase 12. In addition, Phase
10D rrepares intermediate text and creates
dictionary and overflow table entries for
specification, FORMAT, SUBROUTINE, and
FUNCTION statements for wuse as input to
subsequent phases of the compiler. If the
SOURCE option is specified, Phase 10D pre-
pares a list of the statements it processes
and writes thenr on the SYSPRINT data set.

Upon completion of Phase 10D processing,
control is passed to Phase 10E.

PHASE 10E

Phase 10E converts statement function
definitions, executable statements, and any
FORMAT statements interspersed within those
statements into intermediate text, which is
used as input to subsequent phases of the
compiler. During the processing of the
above statements, entries are made into the

dictionary and overflow table for the vari-
ables, statement nuwbers, etc., encountered
in the statements. If the SOURCE option is
specified, Phase 10E also prepares a list
of the statements it encounters and writes
them on the SYSPRINT data set immediately
following the list prepared by Phase 10D.

Upron completion of Phase 10E processing,
control is passed either to Interlude 10E
for SPACE compilations, or to Phase 12 for
PRFRM compilations.

INTERLUDE 10E

Interlude 10E closes and then opens the
appropriate data control blocks so that
only the BSAM input/output routines
required by Phases 12 and 14 are present in
as compact an area of main storage as
possible. These routines were not called
in earlier because storage for them did not
exist during the execution of Phases 10D
and 10E.

Upon completion of Interlude 10E pro-
cessing, control is passed to Phase 12.

PHASE 12

Phase 12 assigns relative' addresses to
symbols entered in the dictionary, overflow
table, and COMMON and EQUIVALENCE text.
The addresses assigned at this time indi-
cate the relative addresses at which the
various symbols will reside in main storage
during execution of the load module (i.e.,
the object module after it has been pro-
cessed by the linkage editor). Phase 12
also allocates storage for a branch list
table for referenced statement numbers and
assigns a relative number to each ref-
erenced statement number it encounters.
Phase 12 generates and then writes ESD and
RID card images for referenced subprograms,
and TXT card images for 1literals on the
SYSLIN data set if the LOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. 1In addition,
if the MAP option is specified, Phase 12
produces a storage map on the SYSPRINT data
set of all symbols and literals and their
relative addresses.

Uron completion of Phase 12 processing,
control is passed to Phase 14.

PHASE 14

Phase 14 reads the intermediate text
created by Phases 10D and 10E and replaces
any pointers to dictionary entries with
information obtained from the dictionary
(e.g., with addresses assigned to variables

by Phase 12). Phase 14 also converts
intermediate text for FORMAT statements
into an internal code that is wused, at

object time, by IHCFCOME, a member of the
FORTRAN system library (SYS1.FORTLIB), to
place input/output records into the speci-
fied formats.

TXT card images for FORMAT statements
are generated and then written on the
SYSLIN data set if the LOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. 1In addition,
Phase 14 assigns a position in a second
branch 1list table for each statement func-
tion (SF) expansion and DO statement
encountered. For SPACE compilations, Phase
14 also frees the storage occupied by the
dictionary. (The dictionary is no longer
needed after Phase 14 processing.)

Upon completion of Phase 14 processing,
control 1is passed either to Interlude 14
for SPACE compilations, or to Phase 12 for
PRFRM compilations.

INTERLUDE 14

Interlude 14, by closing and then open-
ing the appropriate data control blocks,
reduces the size of the currently required
BSAM input/output routines. This reduc-
tion, as well as the freeing of the dic-~
tionary area of storage by Phase 14, pro-
vides the additional main storage that may
be needed for subsequent processing.

Upon completion of Interlude 14 process-
ing, control is passed to Phase 15.

PHASE 15

Phase 15 primarily translates arithmetic
expressions into approximate machine code;
that 1is, it produces the data necessary to
allow text words to be translated into
machine instructions by Phase 25.

Upon completion of Phase 15 processing,
control is passed either to Interlude 15
for SPACE compilations, or to Phase 20 for
PRFRM compilations.

Section 1: Introduction 15

INTERLUDE 15

Interlude 15, by clocsing and then open-
ing the appropriate data control blocks,
calls in the BSAM input/output routines
necessary for performing the I/O operations

for the remainder of the compilation.

Upon completion of Interlude 15 process-
ing, control is passed to Phase 20.

PHASE 20

Phase 20 increases the efficiency of the

object coding by decreasing the amount of
computation associated with subkscript
expressions. Phase 20 also creates an

argument list takle to be used, at object
time, to provide the addresses of argument
lists to subprograms and SFs referenced by
the source module. Generated are: ESD card
images for any implicitly called 1library
subprograms (refer to the publication IBM
Ssystem/360 Operating System: FORTRAN IV (E)
Library Subprograms); and RLD and TXT card
images for any 1literals generated by the
phase and for each entry in the argument
list table. These are then written on the
SYSLIN data set if the 1IOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. 1In addition,
if the MAP option is specified, Phase 20
produces a storage map of the above gener-
ated literals and references on the SYS-
PRINT data set.

Upon completion of Phase 20 processing,
if the NOLOAD ortion is specified and
source statement errors were detected, con-
trol is passed to Phase 30 to generate
error/warning messages; otherwise, control
is passed to Phase 25.

PHASE 25

Phase 25 analyzes the text produced by
the preceding phases of the compiler and
transforms that text into machine language
instructions; these instructions become
suitable for execution on the IBM
System/360 after being processed Ly the
linkage editor. The instructions are gen-
erated and written on the SYSLIN data set
if the LOAD option is specified and/or the
SYSPUNCH data set if the DECK option is
specified. Phase 25 ccmpletes the assembly
of several tables (branch list table for
statement numbers, branch list table for SF

16

expansions and DO statements, and a base
value table) required for the execution of
the instructions generated by the phase.
In addition, if the MAP option is speci-
fied, Phase 25 produces a 1list of the
referenced statement numbers on the SYS-
PRINT data set.

Uron completion of Phase 25 processing,
controcl 1is passed to Phase 30 to generate
errcr/warning messages if necessary, and to
process the END statement.

SOURCE SYMBOL MODULE

The source symbol module is used to
contain the names of all the variables and
constants used in the source module and the
relative addresses assigned to them by
Phase 12. Phase 25 uses the source symbol
module tc produce an object module 1listing
if the wuser specifies the object listing
opticn (3) and if the object listing facil-
ity is enabled.

OBJECT LISTING MODULE

The object listing module is loaded into
main storage by Phase 25. It is wused by
Phase 25 to generate the object module
listing, if the user specifies the object
listing option (3$) and if the okject list-
ing facility is enabled.

PHASE 30

Phase 30 may be entered from Phase 20 or
frcm Phase 25. When Phase 30 is entered
from Phase 20 cr Phase 25, any
error/warning messages are generated by
examining the output text of the preceding
phases. Phase 30 also lists the size of
COMMON (in bytes), and the size of the
obhject module (in bytes) on the SYSPRINT
data set. In addition, if Phase 30 is
entered from Phase 25, Phase 30 processes
the END statement. This entails generating
and writing TXT and RLD card images for the
branch 1list tables, the base value table,
and the END card image on the SYSLIN data
set if the LOAD option is specified and/or
the SYSPUNCH data set if the DECK option is
specified.

Uron completion of Phase 30 processing,
control is passed to Phase 1.

Section 2 describes the logic and func-
tions of each phase of the compiler.

PHASE 1 (IEJFAAAO/IEJFAABO)

Phase 1 is both the first and last phase
to be executed for each compilation. The

phase is initially entered from a calling
program (e.g., the initiator/terminator);
subsequent entries are made from either

Phase 7 if a PFRFM compilation is altered
to a SPACE compilation (restart condition),
or from Phase 30 -- the last processing
phase of the compiler.

At the initial entry (IEJFAAAO), Phase 1
initiates the first compilation and then
transfers control to Phase 7.

At subsequent entries (IEJFAABO), Phase
1 either initiates the next compilation if
other source modules are to be compiled, or
terminates the compilation (i.e., if no
more source modules are present). If a new
compilation is initiated, Phase 1 transfers
control to Phase 7; if the compilation is
terminated, Phase 1 returns control to the
calling program.

Chart 01 illustrates the overall logic
and the relationship among the routines
used in Phase 1. Table 2, the routine
directory, 1lists the routines used in the
phase and their functions.

INITIAL ENTRY

At the initial entry, Phase 1 initiates
the first compilation. This entails:

Loading the interface module.

Loading the print buffer module.
Processing compiler optioms.

Loading the performance module if the
PRFRM option is specified and if the
value specified in the SIZE option is
at least 17504.

e Opening required data control blocks.

e ILoading Phase 7.

Section 2:

SECTION 2: DISCUSSION OF COMPILER PHASES

Loading the Interface Module

When Phase 1 receives control from the
calling program, it 1loads the interface
module (IEJFAGAO) into main storage via the

LOAD macro-instruction. The interface
module contains:

¢ The communication area.

e DCBs (data control blocks) and DECBs

(data event control blocks).
e Interface routines.

COMMUNICATION AREA: The communication area

contains information that must be communi-
cated ketween the various components of the

compiler. The communication area contains
the following type of information:
s User-specified information, that is,

options and parameters chosen by the
user to tailor the output of a compila-
tion to his specifications (e.g.,
DECK) .

¢ Default values for compiler options.
The interface module is assembled, and
processed by the linkage editor during
system generation. This allows the
user to specify default values for
compiler options (refer to the publica-
tion IBM System/360 Operating System:
System Generation). These default
values will be assumed if the corres-
ponding values in the PARM field of the
EXEC statement for a FORTRAN compila-
tion are mnot included by the user.
(Refer to Appendix K for the default
values that may be specified during the
system generation process.)

e Information required for communication

between the compiler and the operating
system, such as:
1. Branch instructions to specific

routines in the interface module.
(For PRFRM compilations, these
branch instructions are, in effect,
replaced by branch instructions to

routines in the performance
module.)

2. B pointer to DCBs (data control
blocks) and the DECBs (data event
control blocks) needed for
input/cutput operaticns during the
compilation.

Discussion of Compiler Phases 17

e Compilation information, such as:

1. Type of program/subprogram being
compiled (i.e., main program, FUNC-
TION subprogram, or SUBROUTINE
subprogram) .

2. Size of internal text buffers.

table index-
and work areas.

3. Addresses of buffers,
es, certain tables,

indicators of any
during the

4., 1Indicators (e.g.,
errors encountered
compilation).

e Object-time information, such as:

1. Size of COMMON to be used with the
object module, and of the tables
required for the object module exe-
cution.

2. The location counter used, through-

out the compilation, for the
assignment of object-time address-
es.

DCBS AND DECBS: The DCBs and DECBs for the
data sets wused during the compilation are
assembled into the interface module in
skeletal form. (For a description of the
DCBs and DECBs refer to the publication IBM
System/360 Operating System: Introduction
to Control Program lLogic, Program Logic
Manual.) The various fields of the DCBs
are filled in by the control program when
the data control blocks are opened (refer
to the publication IBM System/360 Operating
System: Concepts and Facilities). However,
the. DCB block size fields for data sets
SYSUT1 and SYSUT2 are overlayed with values
computed by the compiler.

INTERFACE ROUTINES: The interface module
contains four interface routines: an I/0
routine, an end-of-phase routine, a print
control operations routine, and a patch
routine. (See Chart 02).

The I/0 routine (SIORTN) processes I/0
requests of the compiler. For SPACE compi-
lations, the I/O requests are initiated via
a 1linkage to this routine. (Refer to
Appendix H for a description of this 1lin-
kage to the interface module.) For PRFRM
compilations, the I/O requests are initiat-
ed via a linkage to the PIORTN routine in
the performance module. The PIORTN, in
turn, links to the SIORTN routine in the
interface module. The SIORTN routine:

e Analyzes the linkage parameters passed
to it by either the component of the
compiler requesting I/0, or other
interface module routines. These par-

18

aneters indicate: (1) the type of
request (read, write, or check), (2)
the address of the I/0 buffer for the
oreration, and (3) what data set is to
be used for the operation.

e Fulfills the reguest by
appropriate macro-instruction
WRITE, and/or CHECK).

issuing the
(READ,

The compile-time I/0 erroxr recovery pro-
cedure is illustrated in Chart 02.

The end-of-phase routine (SNEXT) is the
means by which control is passed from one
component of the compiler to the next for
SPACE compilations. The transferring of
control between compiler components is ini-
tiated via a 1linkage to this routine.
(Refer to Apprendix H for a description of
this linkage toc the interface module.) The
end-of-phase routine:

e Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These paramet-
ers indicate the name of +the next
component to be executed and the dispo-
sition of various data sets.

e Repositions the data sets indicated in
the linkage parameters.

¢ Transfers control to the next component
via the XCTL macro-instruction.

The print control operations (PRTCTRL)
routine allows the use of device-
independent control orerations for the

SYSPRINT data set. If the data set is
being placed onto an intermediate storage
device before being printed, the printer
control codes remain as part of the data
set (thereby retaining device
independence) .

The patch routine (PATCH) allows tem-
porary modification of the compiler
modules. (A module is wodified for the
duration of a Lkatch compilation.) Each
compiler module unconditionally branches to
the patch routine to check whether the
module being executed 1is to be modified.
(Refer to Appendix H for a description of
this 1linkage to the interface module.) If
it is, the patch routine overlays the
instructions or data of the module to be
modified with patch information for that
module. This information is placed in the
patch takle (a 100-kyte portion of the
patch routine) by Phase 7. If there is no
patch information, control is immediately
returned to the module being executed.

ILoading the Print Buffer Module

The print buffer mwodule (IEJFAKAO) is
loaded into main storage during Phase 1.
It contains two I/O buffers that are used
by the SYSIN and SYSPRINT data sets. SYSIN
uses the I/0 buffers during the source
statement scan. The card images of the
source module(s) to ke compiled are alter-
nately read into one of the two buffers.
The double-buffer scheme allows for over-
lapping the scanning of a card image in one
buffer with the reading cf the next card
image of the source module into the other
buffer.

SYSPRINT uses the I/0 buffers for: (1)
writing patch records if any, (2) generat-
ing the storage map, and (3) listing the
source module.

Processing Compiler Options

Options may be chosen by the user +tc
tailor the output of the compiler to his
specifications. Phase 1 checks these
options specified in the execute statement
(EXEC) for the compilation. This informa-
tion was previously entered into an area
designated by the calling program. The
contents of this area are obtained by Phase
1 via an address in general register 1.
They are then encoded and entered in the
communication area. For a description of
the options and their use, refer to the
publication IBM System/360 Operating Sys-
tem: FORTRAN IV (E) Programmer's Guide.

If the object 1listing facility of the
compiler has been enabled, Phase 1 also
checks whether the okject listing option (a
$ in the PARM field of the EXEC statement)
is specified. (The object listing facility
is enabled by reassembling Phase 1 with the
branch instruction that disables the facil-
ity either removed or replaced with a no-op
instruction.) If the option is specified,
Phase 1: (1) sets the appropriate indicator
in the communication area, and (2) loads
the source symbol load module (SORSYM) into
main storage. SORSYM, a SYS1.LINKLIB 1load
module (IEJFAXAO), reserves an area in main
storage. The names of all variables and
constants used in the source module and
their corresponding relative addresses are
placed into this area ky Phase 12.

If the object listing facility has not
been enabled, Phase 1 indicates an invalid
compiler option, by setting the invalid
option bit in the communication area, if
the object listing option is specified.

Loading the Performance Module

Phase 1 exarines the PRFRM bit in the
commrunication area to determine if the
PRFRM option has been specified by the
user. If the PRFRM option is specified,
and if the value specified in the SIZE
option is at least 17504, Phase 1 loads the

perfcrmance module (IEJFAPAO) into main
storage. The performance module reduces
phase-to-phase transition processing and

thereby decreases congpilation time. The
perfcrmance mcdule is composed of two rou-
tines and two tables.

PERFORMANCE MODULE ROUTINES: The perfor-

Section 2:

mance module contains an I/0 routine, and
an end-of-phase routine. (See Chart 03.)

(PIORTN) is wused to
deblock compiler ingut on SYSIN; and to
block compiler ocutput on SYSLIN, SY¥SPRINT,
and SYSPUNCH, as required by the block
sizes specified for the above data sets.
I/0 requests for a PRFRM compilation are
initiated via a linkage to this routine.
(Refer to Appendix H for a description of
this linkage to the rerformance module.)
The I/O routine:

The I/0 routine

e Analyzes the linkage parameters passed
to it by the calling phase. These
parameters indicate: (1) the type of
request (read, write, check, or flush),
(2) the address of the area into which,
or from which the logical record is to
be moved, and (3) the data set to be

used for the operation. (A flush
request forces the contents of the
current output buffer to be written
out.)

e Deblccks compiler input from SYSIN if a
blocking factor greater than 1 is spec-
jified. The PIORTN routine reads (via a
linkage to the SIORTN routine in the
interface module) a block from the
SYSIN data set intc an I/0 buffer only
when an entire block has been deblocked
and moved into the area requested by
the calling phase. This reduces the
number of READ macro-instructions
issued for a compilation and thus
decreases compilation time.

e Blocks compiler output on the output
data sets if their corresponding block-
ing factors are greater than 1. (Each
blocking factor is determined from the
BLKSIZE (block size) field in the DCB
rarameter of the associated DD state-
ment.) In general, the PIORTN writes
(via a linkage to the SIORTN routine in

Discussion of Compiler Phases 19

module) a block onto an
only when the I/O
kuffer containing that block has been
filled. (However, when Phase 1
requests a flush at the end of the last
compilation, the PIORTN will force a
truncated buffer +to be written if the
buffer is only partially filled.) This
reduces the numkcer of WRITE macro-
instructions issued for a compilation
and thus decreases compilation time.

the interface
cutput data set

The end-of-phase routine (PNEXT) is the
means Ly which control is passed from one
component of the compiler to the next for
PRFRM compilations. The transferring of
control between compiler components is
initiated via a linkage +to this routine.
(Refer to Appendix H for a description of
this linkage to the performance module.)
The end-of-phase routine:

e Analyzes the linkage parameters passed

to it by the component of the compiler
relinquishing control. These paramet-
ers 1indicate the name of the next

component to be executed, and the dis-
position of the various data sets.

e Repositions the data sets indicated in
the linkage parameters.

o Transfers control to the next component
via the XCTL macro-instruction. If the
next component is an interlude, the
performance module bypasses the execu-
tion of the interlude and transfers
control to the next rhase of the com-
piler. If the next component is a
phase, the performance module immedi-
ately transfers control to the next
phase.

PERFORMANCE MODULE TABLES: The performance
module contains two takles: the blocking
table, and the BLDL taktle.

Phase 7 constructs a
entry for each of the data control blocks
that are opened by Phase 1. The blocking
table provides the PIORTN routine with the
information necessary to deblock compiler
input, and to block corpiler output.
(Refer to Appendix C for the format of the
blocking table.)

blocking table

Phase 7 constructs +the BLDL table via
the BIDL macro-instruction. The BLDL table
provides the PNEXT routine with the infor-
mation necessary to transfer contrcl from
one component of the compiler to the next.
(Refer to Appendix C for the format of the
BILDL table.)

20

Opening Required Data Control Blocks

The data control blocks that are opened
by Fhase 1 depends ugon the options speci-
fied by the user.

If the SPACE option is specified, Phase
1 opens (via the OPEN macro-instruction)
only the data control blocks for the data
sets used by Phases 7, 10D, and 10E (SYSIN,
SYSUT1, SYSUT2, and SYSPRINT). The main
storage that is saved at this time by not
opening the data control blocks for SYSLIN
and SYSPUNCH is necessary for the execution
of Phases 10D and 10E. (The SYSLIN and
SYSPUNCH data sets are not needed by the
compiler until the execution of Phase 12.
Therefore, their corresponding data control
blocks are not opened until the execution
of Interlude 10E.)

If the PRFRM option is specified, Phase
1 opens (via the OPEN macro-instruction)
the data contrcl blocks for all the data
sets required by the compiler. Because all
the required data control blocks are opened
initially, the ccmpiler can bypass the
execution of Interludes 10E, 14, and 15;
and can avoid repeated closing and re-
opening of data control blocks. Bypassing
the execution of the interludes reduces
phase-to-phase transition +time and thus
decreases compilation time.

If neither the SPACE nor the PRFRM
option is srecified, Phase 1 assumes a
default wvalue of SPACE and opens the data
control blocks accordingly.

The manipulaticn of data control klocks
by suksequent components of the compiler
for SPACE compilations as well as for PRFRM
compilations is illustrated in Appendix A.

Loading Phase 7

Phase 7 (IEJFEAAQ) is loaded into main
storage ky Phase 1, using the LOAD macro-
instruction. This is not the normal
condition; normally, the XCTL macro-
instruction in the end-of-phase routine is
used to call a phase into main storage.

Phase 1 loads Phase 7 into the highest
area of available main storage, relative to
location zero. (The XCTL macro-instruction
would load Phase 7 into the lowest area of
available main storage.) This special
loading by Phase 1 permits Phase 7 to set
up the vresident tables in the lowest area
of available main storage. The physical
locations occupied by the various compiler
compcnents and resident tables are illus-
trated in Appendix J.

SUBSEQUENT ENTRIES
At subsequent entries, Phase 1 either:

e Initiates a new compilation, or
e Terminates the compilation.

Initiating a New Compilation

If a new compilaticon is to be initiated,
Phase 1 first determines if a PRFRM or a
SPACE compilation is to be performed. 1If a
PRFRM compilation is to be performed, Phase
1 immediately loads (via the LOAD
macro-instruction) Phase 7 into main stor-
age and then transfers control to Phase 7.

If a SPACE compilation is to be per-
formed, Phase 1 determines if a restart
condition exists. That is, if a PRFRM
compilation was requested and Phase 7 det-

ermined that the required main storage for
the PRFRM compilation was not availakle.
Phase 7 then alters the PRFRM compilation
to a SPACE compilation and returns control
to Phase 1.

If a restart condition exists, Phase 1:

(1) deletes (via the DELETE
macro-instruction) the performance module
from main storage, (2) closes (via the
CLOSE macro-instructicn) the data control

blocks for all required compiler data sets
(opened by Phase 1 for the PRFRM option),
and (3) reopens (via the OPEN
macro-instruction) only the data control
blocks for the data sets required for
Phases 7, 10D, and 10E. Phase 1 then loads
(via the LOAD macro-instruction) Phase 7
into main storage and transfers control to
Phase 7.

If a restart condition does not exist
and if the SPACE option is in effect, Phase
1 first frees (via the FREEMAIN
macro-instruction) the main storage that
was previously allocated to the compiler
for +the internal text buffers and the
overflow table during execution of Phase 7.
Subsequent Phase 1 processing except for
the deletion of the rerformance module is
the same as that described for the restart
condition.

Terminating the Compilation

If the 1last source module on the SYSIN
data set has been compiled, Phase 1 first
requests a flush operation for the SYSLIN,
SYSPUNCH, and SYSPRINT data sets. A flush
request forces the current output buffer

being used for a blocked data set to be
written. This insures that all compiler
output for blocked data sets 1is written.
In the case c¢f an unklocked data set, the
flush request for that data set is ignored.
Phase 1 next closes (via the CLOSE
macro-instruction) the data control blocks
for all the data sets used by the compiler.
Phase 1 then: (1) frees (via the FREEMAIN
macrc-instruction) all the main storage
that was allccated to the compiler during
execution of Phase 7, and (2) deletes (via
the DELETE macro-instruction) the interface
module, the print buffer module, and, for a
PRFRM compilation, the performance module.
Control is then returned to the calling
program with the proper return code.

If internal errors (e.g., permanent I/0
errors) occur at any time, the current
compilation is immediately terminated by
calling Phase 1. Phase 1 then performs the
above processing and returns control to the
calling program with a return code of 16.

PHASE 7 (IEJFEAAQ)

Section 2:

Fhase 7,
er, is
Phase 1.

the second phase of the compil-
entered after the completion of
The functions of the phase are:

e Obtaining
er.

® Allocating main storage to the
er.

e Constructing
the compiler.

main storage for the compil-
compil-

resident tables wused by

At the conclusion of Phase 7 processing,
a delete routine is mcved into the print
buffer module. Control is then passed to
the delete routine. The delete routine
deletes Phase 7 from main storage (via the
DELETE macro-instruction) and then passes
control to either Phase 1 (to restart or
terminate a compilation) or to Phase 10D

(to begin the scan of source module
statements).
Chart O4 illustrates: (1) the overall

logic and the relationship among the rou-
tines of Phase 7, and (2) the overall logic
of the delete routine. Table 3, the rou-
tine directory, lists the routines used in
the rhase and their functions.

OBTAINING MAIN STORAGE

The amount of main storage required by
the compiler depends on whether a SPACE or
a PRFRM compilation is Dbeing performed.
For a SPACE compilation, a minimum of

Discussion of Compiler Phases 21

15,360 bytes is required. For a PRFRM
compilation, a minimum of approximately
19,500 bytes 1is required. (The exact
amount depends on the device configuration
of the user. That is, different I/0O devi-
ces require different access method rou-

tines and different control blocks.)

The process of obtaining main storage is
actually started in Phase 1. Phase 1 has
already obtained main storage for:

e The interface module.

¢ The print buffer module.

¢ The performance mnodule
option is specified).

e BSAM routines.

(if the PRFRM

e Phase 7.
Phase 7, upon receiving control f£from
Phase 1, calculates the total amount of

main storage obtained by Phase 1, and
subtracts this amount from the value speci-
fied in the SIZE option. (If the SIZE
option was not specified by the user, the
minimum amount required for a SPACE compi-
lation is assumed as a default value for
the SIZE option.) The result of this
calculation is the amount of main storage
that Phase 7 attempts to obtain via the
GETMAIN macro-instruction. If more than
this amount is obtained, Phase 7 frees the
excess via the FREEMAIN macro-instruction.
If less than the minimum amount required
for a SPACE compilation is obtained, an
unconditional GETMAIN macro-instruction is
issued in order to obtain the minimum
amount.

ALLOCATING MAIN STORAGE

The procedure used by Phase 7 for allo-
cating main storage derends on whether a
SPACE or a PRFRM compilation has been
initiated. Appendix J illustrates the main
storage allocated to the compiler for both
SPACE and PRFRM compilations.

For SPACE Compilations

For a SPACE compilation, the main stor-
age obtained by Phase 7 is allocated, via

the storage allocation table, among the
transient work area (an 800-byte area
required by the control program), the dic-
tionary, the overflow table, and four

internal text buffers. The storage alloca-
tion table (refer to Appendix B) indicates
the amount of main storage to be allocated
to the text buffers, the dictionary, and
the overflow table.

22

The main storage allocated to the dic-

tionary and the overflow table, except for
the reserved word portion of the dictio-
nary, may be segmented. That is, the

dictionary and overflow table may occupy
more than one segment of main storage. The
location of the segments allocated to the
dictionary and overflow table are recorded
(sequentially by address) in a segment
address list (SEGMAL). SEGMAL resides at
the beginning of the first segment. The
location of the dictionary index and the
overflow table index as well as a pointer
to the ending location of the current
segment in which the dictionary and over-
flow table are being built are recorded in
the communication area.

The dictionary portions are loaded into
the highest storage segment(s) and the
overflow table portions are loaded into the
lowest storage segment(s). This ensures
that the dictionary resides "above" the
overflow table. The dictionary must reside
above the overflow takle because the stor-
age allocated to the dictionary is freed
(via the FREEMAIN macro-instruction) at the
conclusion of Phase 14 processing. This
additional main storage is required for the
execution of subsequent phases, primarily
for Phase 15. (For PRFRM compilations, the
main storage allocated to the dictionary is
not freed until compilation is terminated
by Phase 1.)

The main storage allocated to the inter-
nal text buffers may ke segmented. Howev-
er, the main storage for each buffer itself
must ke contiguous. The location of the
segment assigned to each buffer is indicat-
ed in the communication area.

For PRFRM Compilations

For a PRFRM compilation, the main stor-
age allocation algorithm must determine if
blocked I/0 is specified by the user.

BLOCKED I/O: If any klocked I/0 is speci-
fied, portions of the obtained main storage
must be allocated to special I/0 buffers
required for klocking and deblocking.
Phase 7 allocates main storage for two I/O
buffers for each data set for which block-
ing is requested. The size of each buffer
is determined by the BLKSIZE field in the
DCB rarameter of the associated DD state-
ment. If the BLKSIZE fields are not speci-
fied, the compiler assumes the following
default values for the compiler data sets:

e SYSPRINT -- 121
¢ All others -- 80

After allocating main storage for the
special 1I/0 buffers, Phase 7 determines if
sufficient storage remains for the tran-
sient work area, the dictionary, the over-
flow table, and the four internal text
buffers. If there is sufficient storage,
subsequent main stcrage allocation for a
PRFRM compilation with blocked I/0 is the
same as that described for a SPACE compila-
tion.

In the event that the remaining main
storage is not sufficient, the compilation
is terminated and control is transferred to
Phase 1. Phase 1, in turn, passes control
to the scheduler tc terminate the job step.

UNBLOCKED I/0: If all I/O is unblocked,
Phase 7 determines if the amount of main
storage obtained is sufficient for the
transient work area, the dictionary, the
overflow table, and the internal text buf-
fers. If there is sufficient storage,
subsequent main storage allocation for a
PRFRNM compilation with unblocked I/O is the
same as that described for a SPACE compila-
tion.

If the amount of main storage oktained
is not sufficient, Phase 7 frees (via the
FREEMAIN macro-instruction) all the main

storage it obtained. Phase 7 then alters
the PRFRM compilation to a SPACE compila-
tion (restart condition) and transfers con-
trol to Phase 1 via the delete routine.
Phase 1 then initializes the compiler for a
SPACE compilation.

RESIDENT TABLE CONSTRUCTION

The resident tables of the
(described in Appendix C) are:

compiler

The dictionary and the overflow table.
The segment address list (SEGMAL).

The patch table.

The blocking table and the BLDL table
(resident only for PRFRM compilations).

For the dictionary and the overflow
table, Phase 7 only constructs the portions
that are independent of the source module
being compiled. SEGMAL. is constructed as
main storage segments are allocated to the
dictionary and the overflow table. The
patch table, a portion of the interface
module, 1is constructed only if the patch
facility has been enabled and if ©patch
records precede the source statements of
the source module(s) being compiled. The
blocking table and the BLDL table, portioms
of the performance module, are constructed
only for PRFRM compilations.

Dictionary and Overflow Table

Phase 7 constructs cnly those portions
of the dictionary and overflow table that
are independent of the source module being
compiled. In the dictionary, the index and
the reserved word portion are constructed.
In the overflow table, the overflow index
is ccnstructed.

The index for the dictionary and the
index for the overflow table are wused by
subsequent phases to enter information into
and oktain information from the respective
table. The reserved word portion of the
dictionary contains all the reserved words
of the FORTRAN IV (E) language.

SEGMAL
SEGMAL contains the starting and ending
addresses of each main storage segment

allocated to the dicticnary and the over-
flow takle. The starting address and the
length of each segment is obtained as a
result of the GETMAIN macro-instruction.
Phase 7 then computes the ending address of
each segment, and enters both the starting
and ending address for each segment into
SEGMAL. This sequence of addresses consti-
tutes SEGMAL.

Patch Table

If the patch facility of the compiler
has been enabled, Phase 7 determines if the
first record read from SYSIN is a patch
record. (The patch facility is enabled by
reassenbling Phase 7 with the branch
instruction that disakles the patch facili-
ty either removed or replaced with a no-op
instruction.) If the first record is a
patch record, it is first listed on SYsS-
PRINT and then posted in a patch table (100
bytes) in the interface module. Posting
consists of: (1) converting the contents of
a patch record into a format that is usable
to the patch routine, and (2) moving the
converted patch record to the patch table.
All subsequent patch records are processed
in this manner by Phase 7.

Blocking Table and BLDL Table

Section 2:

Phase 7 constructs the blocking table
and the BLDL table only for PRFRM compila-
tions. The performance module contains the
main storage required for these tables.

Discussion of Compiler Phases 23

Phase 7
entry for
that were
places

constructs a blocking table
each of the data control blocks
opened by Phase 1. Phase 7
information into the blocking table
that is required for deblocking compiler
input and Dblocking compiler output. This
information includes such things as: logi-
cal record length, klocking factor, poin-
ters to the special buffers allocated by
Phase 7, etc.

Phase 7 constructs the BLDL table via
the BLDL macro-instruction. (For a des-
cription of the BLDL macro-instruction,
refer to the publicaticon IBM_ System/360
Operating System: Data Management.) The
BLDL takle contains the information neces-
sary to transfer control from one component
of the compiler to the next. The construc-
tion of +the BLDL table reduces phase-to-
phase transition time and thereby decreases
compilation time.

PHASE 10D (IEJFGAAQ)

Phase 10D, the first processing phase of
the compiler, is entered after the
completion of Phase 7. This phase process-
es the specification statements of the
source module (plus the FUNCTION or SUBROU-

TINE statement if a subprogram is being
compiled). These statements, which are
called declarative statements, are:

¢ COMMON

¢ DIMENSION

¢ EQUIVALENCE

e INTEGER

e REAL

e DOUBLE PRECISICN

¢ EXTERNAL

e FORMAT

e SUBROUTINE or FUNCTION

Declarative statements, other than the
FORMAT statement, must precede the state-
ment function definitions and the execut-
able statements. The executable statements
are all FORTRAN IV (E) statements other
than those listed above and statement func-
tion definitions.

In processing the declarative state-
ments, Phase 10D performs the following
functions:

e Prepares intermediate text.
e Constructs dictionary and overflow

table entries.
e Prepares the first part of the source
statement listing (a minor function).

Phase 10D and Phase 10E (the next phase

to be executed) convert each FORTRAN source
statement into wusable input to subsequent

24

phases of the compiler. Phase 10D converts
the declarative statements; Phase 10E con-
verts the statement function definitions
and the executable statements. The result
of this conversion is intermediate text (an
internal representation of the source
statements), and the dictionary and over-
flow table that ccntain detailed informa-
tion about specific portions of the state-
ment.

The information in the dictionary and
overflow table suprlements the intermediate

text in the generation of code by the
succeeding phases. This information is
asscciated with the intermediate text
entries via pointers that reside in the
text entries.

A complete listing of the declarative

staterents is prepared on the SYSPRINT data
set by Phase 10D if the SOURCE option has
been chosen.

When a statement function definition or
an executable statement is encountered in
the input stream, control is passed to
Phase 10E.

Figure 4 illustrates the data flow with-
in the phase.

Chart 05 indicates the overall logic and
the relationship among the routines of
Phase 10D. Takle 5, the routine directory,
lists the routines used in the phase and
their functions.

INTERMEDIATE TEXT PREPARATION

Phase 10D produces intermediate text,
which is the form in which dinformation is
transmitted from the source module to the
processing phases. (Refer to Appendix L
for a descrirtion of the source statement
scan required for intermediate text prepar-
ation.)

FOR-
and SUBROUTINE declarative
statements. (Refer to Appendix D for the
intermediate text format.) This text is
used to transmit these statements to Phases
14, 15, 20, and 25.

Intermediate text is prepared for
MAT, FUNCTION,

Twc special forms of intermediate text,
COMMCN and EQUIVALENCE text, are produced
for COMMON and EQUIVALENCE statements, res-
pectively. (Refer to Appendix D for the
format.) These special forms of text
transmit the corresprcnding statements to
Phase 12.

|
| Declarative |
SYSIN | Statements i
| of the Source|
| Mcdule |

FORMAT,
| FUNCTION, and
SUBROUTINE
| Statements
_____ L
| Phase 10D

r
COMMON and
| EQUIVALENCE

| | SYSUT2 orx
|

| Text |

I |
J

Main Storage

SYSUT1 or
Main Storage

r
| Intermediate
| Text for

b o s s e s s s

Dictionary |

Main Storage |
| and Overflow |
|

Table
Figure 4. Phase 10D Data Flow

CONSTRUCTION OF DICTIONARY AND OVERFLOW
TABLE ENTRIES

Dictionary and overflow table entries
are made during Phase 10D for:
e Symbols appearing within declarative
statements.

e Statement numbers associated with de-
clarative statements.

Entries are made to the dictionary
(refer to Appendix C) for symbols appearing
in all declarative statements except the
FORMAT statements. If any symbol is
already entered in the dictionary, that
entry is modified, if necessary, to reflect
any new information abkout the symbol under
consideration. For example, if the symbol
is in COMMON, an indicator in the diction-
ary is set on.

Entries are made to the overflow table

(refer to Appendix C) for:

e Statement numbers.
e Dimension information.

Section 2:

Takle

4 X
S —
| Dictionary | Main Storage
and Overflow |
| I
L

Source SYSPRINT
Statement

I I
| I
| Listing |
L 4

PHASE 10E (IEJFJAAQ)

10E, the second processing phase
of the compiler, is entered after the
completion of Phase 10D. The functions of
the phase are:

Phase

e Intermediate text preparation.

e Construction of dictionary and overflow
takle entries.

of the
minor

e Completion of the preparation
source statement listing (a
function).

Phase 10E crrocesses SFs (statement
functions), the executable statements of
the source module, and any FORMAT state-
ments interspersed among them. As each SF,
executable, or FORMAT statement appears in
the input stream, intermediate text is
prepared and corresponding entries are made
to the resident tables. The intermediate
text prepared Ly Phase 10E represents ' the
executable source module statements. The
resident tables complement intermediate
text. (For the formats of the intermediate
text and the resident tables, refer to
Appendixes D and C, respectively.) If any
syntactical errors are encountered during

Discussion of Compiler Phases 25

an SF, executakle, or
FORMAT statement, error intermediate text
entries are made immediately following the
intermediate text entries for the statement
in which the error was detected.

the processing of

As the intermediate text
from the source statements processed by
Phase 10E, a list of these statements is
added to the SYSPRINT data set, which was
begun by Phase 10D.

is prepared

When the END statement is encountered,
Phase 10E passes control either to Inter-
lude 10E (IEJFJGAO) for SPACE compilations,
or to Phase 12 for PRFRM compilations.

Figure 5 illustrates the data flow with-
in the phase. The data sets SYSIN, SYSUT1,
and SYSPRINT are not repositioned after
Phase 10D; therefore, Phase 10E can contin-
ue to read from SYSIN or to add to SYSUT1
and SYSPRINT.

Chart 06 illustrates the overall 1logic
and the relationship among the routines of
Phase 10E. Table 7, the routine directory,
lists the routines used in the phase and
their functions.

INTERMEDIATE TEXT PREPARATION

Phase 10E produces intermediate text for
each SF and executable statement, and for
any FORMAT statements among them. (Refer
to Appendix L for a description of the
source statement scan required for inter-
mediate text preparation.)

For a subscripted expression appearing
within a statement, a unique intermediate

SFs and Exe-
cutable State-
ments of the
Source Module

SYSIN

et

of two words is made (refer to

The offset of the sukscripted
expression (for which a field in this
unique text entry is reserved) is computed
by Phase 10E. For a discussion of this
aspect of subscripted expressions, refer to
Arpendix E.

text entry
Arpencix D).

The combination of the intermediate text
prepared by Phase 10D and the intermediate
text rrepared ky Phase 10E form the inter-
mediate text that is manipulated in the
succeeding phases.

CONSTRUCTION OF DICTIONARY AND OVERFLOW
TABLE ENTRIES

Phase 10E makes entries to the diction-
ary for:

Variables.

Ccnstants.

Subprograms.

Data set reference numbers.

(Refer to Appendix C for the format and
content of these entries.)

Phase 10E makes entries to the
takle for:

overflow

e Subscripted expressions
the executable statements.

e Statement numbers associated with FOR-
MAT statements or executakle state-
ments.

appearing in

(Refer to Appendix C for the format and

content of these entries.)

—
Main Storage | Dictionary
| and Overflow

| Table
| I

Figure 5. Phase 10E Data Flow

26

r=-= 1
| Intermediate | SYSUT1 or
| Text | Main Storage
| I
| |
////////a. -------------- ’
T r 1
| | Dictionary | Main Storage
Phase 10E |—————»{ and Overflow |
| | Takle |
1 L 4
\ ------------- -
| Source | SYSPRINT
| statement |
| Listing |
L J

PHASE 12 (IEJFLAAO)

Phase 12, the third processing phase of
the compiler, is entered either after the
completion of Interlude 10E for SPACE com-
pilations, or after the comrletion of Phase
10E for PRFRM compilations. The functions
of the phase are:

Address assignment.

EQUIVALENCE statement processing.
Branch list table preparation.

Card image preparatiocn.

Preparation of a storage map if the MAP
option is specified (a minor function).

Address assignment is the allocation of
relative storage locations to:

Variables and arrays in COMMON.

Equated variables.

Nonequated variakles and arrays in the
dictionary (dictionary entries).

e Constants.

e Variables in subscripted expressions.

Addresses are assignéd in the order in

which they are listed above.

If the object listing facility of the
compiler has been enabled and if the object
listing option is specified, Phase 12 plac-
es the names of all variables and constants
used in the source module and their corres-
ponding relative addresses into the SORSYM
load module. (SORSYM was previously loaded
into main storage by Phase 1.)

Processing of the EQUIVALENCE text
occurs after the assignment of addresses to
variables and arrays in COMMON but before
the assignment of addresses to dictionary
entries.

ECUIVALENCE text processing assigns
relative positions to the variables within
the EQUIVALENCE statements. These relative
positions are indicated in a table, which
is created and used to assign relative
addresses to the variables according to
their position in the talkle.

After the assignment of addresses to
variables in subscripted expressions, Phase
12 rprepares a branch list table, which is
used to control branching within the object
module.

During the assignment of addresses by
Phase 12, ESD, TXT, and RLD card images are
generated for section definitions, entry
points, literals, and external references.

In addition to the preceding functions,
Phase 12 prepares a storage map to indicate

all address assignments made during the
phase.
After the completion of Phase 12 pro-

cessing, control is passed to Phase 14.

Figure 6 illustrates the data flow with-
in the phase.

Chart 07 illustrates the overall 1logic
of Phase 12 and the relationship among its
routines. Table 8, the routine directory,
lists the routines used in the phase and
their functions.

ADDRESS ASSIGNMENT

An effective address in IBM System/360
Operating System (a base-displacement
address) is the displacement in an instruc-
tion added to the value in a base register.
This yields a two-byte address wherein the

r 1 |
Main Storage | Dictionary | | Dictionary | Main Storage
| and Overflow | | and Overflow |
| Table { | Table |
L 1 s J
\-__---—--——_/ ;
i | | ESD, TXT,RLD | SYSLIN
| Phase 12 || card images | and/or
| | | | SYSPUNCH
- 7 i 1
SYSUT2 or | COMMON and | | Storage | SYSPRINT
Main Storage | EQUIVALENCE | | Map |
| Text | | |
Uy Jd L i |
Figure 6. Phase 12 Data Flow

Section 2:

Discussion of Compiler Phases 27

first four bits rerresent a
ister

general reg-
used as a base register and the last
twelve bits represent the displacement.
All symbols in the object module generated
by the compiler are referenced by this
two-kyte address.

The base~-disrlacement address is
assigned through the use of a location
counter, which is initialized and then

incremented by the number of bytes needed
in main storage to contain the variable,
array, constant, address constant, oOr
equated variable assigned an address. If
more than 4096 bytes are needed, a new base
register is assigned.

There are only two instances in which
the location counter mway be incremented
when no address is assigned:

e The first occurs after the variables in
COMMON are assigned addresses. A new
tase register is assigned toc the loca-
tion counter so that a variable in
COMMON has a different base register
than a variable not in COMMON.

e The second may occur after integer and
real constants are assigned addresses.
The 1location counter is adjusted to
accommodate the double-precision con-
stants. Doukle-precision constants are

assigned addresses immediately after
real and integer constants.
When a variable is assigned an address,

that address is placed in the chain address
field of +the dictionary entry for the
variable.

FORMAT statements are assigned addresses

during the execution of Phase 14. All
phases after Phase 12 assign addresses
whenever a constant or work area is
defined.

EQUIVALENCE STATEMENT PROCESSING

The EQUIVALENCE text 1is processed by
Phase 12 so that equated variables are
assigned to the same address.

The following terms are used in the
description of EQUIVALENCE processing:
e EQUIVALENCE group --

the variable

and/or array names between a left and
right parenthesis in an EQUIVALENCE
statement.

e EQUIVALENCE class -- two or more EQUIV-
ALENCE groups that have the following
characteristic. If any EQUIVALENCE
groups contain the same element, these

28

groups form an EQUIVALENCE class.
Further, if any other group contains an
element in this class, the other group

is part of this class, etc.

¢ Rcot -- the member of an EQUIVALENCE
grour or class from which all other
variables in that group or «class are
referenced by means of a positive dis-
rFlacement.

e Displacement -- the distance, in bytes,
between a variable and its root.

The rcot of an EQUIVALENCE group is
assigned an address, and all other varia-
bles in the group are assigned addresses
relative to that rcot.

Tc determine the root and the displace-
ment cf the other elements in the group
from the root, the first element in the
EQUIVALENCE group is established initially
as the root. The displacement for the
other elements (in relation to the root) is
calculated by subtracting the offset of the
root from the offset of the variable whose
displacement is being calculated. (The
offset for subscripted variables is con-
tained in +the EQUIVALENCE text created by
Phase 10C. The offset for nonsukscripted
variables is zero.)

If the resulting displacement is nega-
tive, the root is changed. The new root is
the variable whose displacement was bkeing
calculated. Whenever a new root is
assigned to an EQUIVALENCE grour, the pre-
viously calculated displacements must be
recalculated.

The root and the displacements in each
grougp are entered in an EQUIVALENCE table,
which is used by the storage assignment
routines of Phase 12 to assign addresses to
equated variables. (Refer to Appendix B
for the table format.)

BRANCH LIST TABLE PREPARATION

The kLkranch list table is initialized by
Phase 12 (and is ccmpleted by Phase 25).
This table is used by the object module to

control the kranching process. (Refer to
Aprpendix F for the table format.) Each
statemrent number referenced in a control

statement is assigned a position relative

to the start of the branch takle. This
position is indicated to Phase 25 by a
relative number, which replaces the chain

field of the corresponding statement number
entry in the overflow table.

In the assignment process, the statement
number chains in the overflow table are

scanned sequentially. Each time an entry
for a statement numker indicates a ref-
erenced statement other than the statement
number of a FORMAT or specification state-
ment, a counter associated with the branch
list table is incremented by 4. (Four
bytes are reguired for the referenced
statement number and the address that will
be assigned to the number by Phase 25.)
The current contents cf +that counter are
then placed in the <chain field of the
corresponding overflow table entry.

This counter is initialized to 0.
Therefore, the first statement number in
the first chain is assigned the number 0,
the second statement number is assigned the
relative number 4, +the third statement
number is assigned the relative number 8,
and so on. After all statement numbers are
assigned, the location counter is incre-
mented by an amount equal to the size of
the branch list takle (in bytes).

CARD IMAGE PREPARATION

Several card images are prepared during
the execution of Phase 12. This involves
setting up the proper formats for the card
images and inserting the pertinent informa-
tion into those formats. The card images
prepared are indicated below, along with
their functions. For a more complete dis-
cussion of the use and format of these
cards, refer to the publication iBM
System/360 Operating System: Iinkage Edi-
tor, Program Logic Manual.

The cards generated by Phase 12 are:

This is the section definition
card for the source module being
compiled.

e ESD-0

card defines the
source

This
point for the
being compiled.

e ESD-1 entry

module

e ESD-2 This card is produced for exter-
nal subprogram names. There may

be several such cards.

This 1is the section definition
card for COMMON (if a COMMON
statement exists in the source
module being compiled).

e ESD-5

e TXT This card is produced for con-
stants that have been entered in
the dictionary. There may be

several such cards.

This card contains the address
of the 1location at which the
address of each external subpro-
grar will be 1loaded at obkject
time. There may be several such
cards.

e RLD

PHASE 14 (IEJFNAAO)

Section 2:

Phase 14, the fourth processing phase of
the compiler, is entered after the comple-
tion of Phase 12. The functions of the
phase are:

FORMAT statement processing.
READ/WRITE statement processing.
Replacing dictionary pointers.
Miscellanecus statement processing.

The FORMAT statement processing converts
the intermediate text for FORMAT statements
into a form acceptable to IHCFCOME and
creates TXT card images. These card images
are used by IHCFCOME to set up the format
of the list items for the I/0 operations of
the compiled source module. For a discus-
sion of IHCFCOME, refer to Appendix G.

The processing fcr READ/WRITE statements
consists of checking the components of the
READ/WRITE statements for validity, pro-
cessing implied DOs within the READ/WRITE
statements, and rearranging the intermedi-
ate text for READ/WRITE statements.

Phase 14 replaces dictionary pointers in
the intermediate text with the agpropriate
address assigned by Phase 12, a data set
reference number, or a statement function
number. (For SPACE compilations, the main
storage occugpied by the dictionary is freed
by Phase 14.)

Urpcn completion of the Phase 14 process-
ing, control is passed either to Interlude
14 (IEJFNGAQO) for SPACE compilations, or to
Phase 15 for PRFRM compilations.

The 1input to Phase 14 is the dictionary
and the intermediate text. The intermedi-
ate text has not changed since it was
created by Phases 10D and 10E. The dic-
tionary has been modified by Phase 12.
Figure 7 illustrates the data flow within
the rhase.

Chart 08 illustrates the overall logic
of Phase 14 and the relationship among its
routines. Table 11, the routine directory,
lists the routines used in the phase and
their functions.

Discussion of Compiler Phases 29

r
I

Main Storage | Dictionary
[
L

———— ey

Dictionary | Main Storage

j\\\\,______,
I
i
i
]
i
]
]
]
i
|
I
I
I
i
[

e g
| | Intermediate | SYSUT2 or
| Phase 14 |——— > Text | Main Storage
| | Modified |
/'L—---_--_—---\L_—-—__—-——-——-J
| T T 1
I | | TXT card | SYSLIN
SYSUT1 or | Interrediate | | Images for | ands/or
Main Storage | Text | | FORMAT | SYSPUNCH
| | | Statements |
R J S J

Figure 7. Phase 14 Data Flcw

FORMAT STATEMENT PROCESSING

A FORMAT statement is composed of one or
more format specifications that define an
I70 format. For a discussion of the physi-
cal structure of a FORMAT statement refer
to the publication IBM System/360 Operating
System: FORTRAN IV (E) Language.

Each FORMAT statement is examined begin-
ning with the first FORMAT code. For each
FORMAT code obtained, a specific processing
routine is called (refer to Table 10). The
processing of each routine consists of
entering the required information for the

FORMAT code into TXT card images. These
images are composed of 1-byte units con-
taining 2 hexadecimal digits. Each byte

contains one of the following:

¢ An adjective code, which indicates to

IHCFCOME the format conversion
(4,1,7,P,X, etc.), a grour or field
count, or the end of a FORMAT state-
ment.

e A number that represents the actual
field count, field length, group count,
or decimal length.

One of the following is entered into a
TXT card image:

¢ Adjective Code and Number. Entered for
FORMAT specifications P,I,T,A, and X,
and for entries made +to indicate a
field or group count.

e Adjective Code. Entered for a
the right parenthesis that ends a
group, or the right parenthesis that
ends a FORMAT statement.

slash,

30

e Adjective Code, Field Length, and Deci-

ral Length. Entered for FORMAT speci-
fications D, E, and F.
¢ Adjective Code, Field Length, and

ILiteral. Entered for FORMAT specifi-
cations H and apostrophe.

As the specific information is entered
intc TXT card images, addresses are
.assigned by incrementing the location

counter (according to the amount of storage
required to contain the contents of a TXT
card image).

During the processing of a FORMAT state-
ment, various accumulators are used to
determine the record length. That length
is compared to the user-specified length
(indicated by the LINELNG option). If the
record length is greater than the specified
length, a warning indicator is placed in
intermediate text. If the wuser has not
specified a record 1length, the standard
length is used.

READ/WRITE STATEMENT PROCESSING

The READ/WRITE statement
involves four ogperations.
check for the validity of the
for the data set
indicator for the
statement is made

processing
The first is a

symbol wused

reference number. An
end of the READ/WRITE

by entering an end-of-
statement indicator in the intermediate
text before any entries for the I/O list.
This allows Phase 20 to handle the I/O list
as a separate statement in intermediate
text.

The second operation is the replacement
of dictionary pointers in intermediate text
(for the symbols in the I/0 1list) with
addresses assigned by Phase 12. This
includes a check for the validity of the
symbols in the I/O list. When an invalid
symbol (a symbol other than a variable or
array name) is encountered, an error condi-
tion is noted in the intermediate text and
the remainder of the I/O list is deleted.

The third operation is to check for and
process implied DOs, which are recognized
by a 1left parenthesis within a READ/WRITE
statement. For each encounter, an implied
DO adjective code is inserted in the inter-
mediate text for the READ/WRITE statement.
When the end of an implied DO is recognized
(right parenthesis), an end DO adjective
code is inserted in the intermediate text.

The fourth operation is to rearrange the
READ/WRITE staterent entries so that later
phases can process the statement correctly.
The implied DO variable and parameters are
placed ahead of any subscripted variables
(whose intermediate text is also
rearranged).

REPLACING DICTIONARY POINTERS

In the intermediate text entries for
FORTRAN statements, other than the END and
FORMAT statements, dictionary pointers are
replaced by:

¢ The address assigned and placed in the
dictionary chain field by Phase 12 if
the pointer refers +to an entry for a
variable, constant, array, or external
function. (The assigned addresses are
obtained from the chain address fields
of the affected entries in the diction-
ary.)

e A data set reference number if the
pointer refers to a data set reference
number.

e A statement function number if the
pointer refers to a statement function.

Section 2:

MISCELLANEOUS STATEMENT PROCESSING

Statement function (SF) definition
statements are assigned a unique SF number
by FPhase 14. This number is used to
reference the SF within an associated
branch list table in the compiled source
mcdule (refer to Phase 25). This unique
nunker is assigned, in sequence beginning
with 01, to each SF in the program and is
moved to the dictionary entry for the name
of that SF. This number also replaces the
pointer field of the intermediate text
entry for the SF.

The text for RETURN, DO, GO TO, IF,
PRUSE, and STOP statements is examined to
determine if the statement in question ends
a DC loop. If it does, an error condition
is ncted in the intermediate text. In
addition to this error check, if the adjec-
tive code for a RETURN statement appears
within a main program, that adjective code
is changed +to the adjective code that
represents a STOP statement.

A statement number entry in +the inter-
mediate text, other than a FORMAT statement
number, is moved unchanged from the input
buffer to the output buffer. A FORMAT
statement number is treated as follows:

e If the number is
warning condition is
intermediate text.

not referenced, a
noted 1in the

o If the number is associated with a
FORMAT staterment that ends a DO loop,
an error condition is noted in the

intermediate text.

¢ If neither a warning nor error condi-
tion is noted for the number, the
contents of ‘the 1location counter are
entered in the chain address field of
the associated overflow table entry.

and END FILE state-
data

BACKSPACE, REWIND,
ments are examined to verify that the
set reference number is a valid symbol.

Intermediate text for computed GO TO
statements is rearranged, putting the vari-
able and the number of statement numbers
before the statement numbers themselves.

Discussion of Compiler Phases 31

PHASE 15 (IEJFPAAOQ)

Phase 15, the fifth processing phase of
the compiler, is entered either after the
completion of Interlude 14 for SPACE compi-
lations, or after the completion of Phase
14 for PRFRM comgilations. The functions
of the rhase are:

Reordering intermediate text.
Modifying intermediate text.
Assigning registers.

Creating argument lists.
Checking for statement errors.

All of the above functions are performed
for the processing of statements that can
contain arithmetic expressions; only the
error checking function is performed for
the remaining statements.

Phase 15 reorders the sequence of inter-

mediate text words within statements that
can contain arithmetic expressions
(arithmetic, arithmetic 1IF, CALL, and

statement functions) so that the resulting
object code generated by Phase 25 will
cause evaluation of arithmetic expressions
according to a hierarchy of operators. As
intermediate text words are being reor-
dered, they are modified, depending on the
operators and operands, to a form closely
resenbling an instruction format. When the
intermediate text words are modified, reg-
isters are assigned, when necessary, to the
operands of all arithmetic operators.
Argument lists for subprogram and statement
function references are created, and in-
line function references are processed by

generating the appropriate instruction
format intermediate text or intermediate
text word for an in-line function call.

During the input text processing, errors
pertaining to DO loops, arithmetic IF
statements, statement numbers, function
arguments, and operand usage and form are
recognized, and the appropriate error mes-
sages are given.

Upon completion of Phase 15 processing,
control is passed .either to Interlude 15
(IEJFPGAO) for SPACE compilations, or to
Phase 20 for PRFRM compilations.

Chart 09 illustrates the overall logic
of Phase 15 and the relationship among its
routines. Table 14, the routine directory,
lists the routines of the phase and their
functicns.

REORDERING INTERMEDIATE TEXT

Phase 15 reorders the sequence of inter-
mediate text words within arithmetic
expressions so that the resulting code
generated by Phase 25 will cause evaluation
of arithmetic expressions according to a
hierarchy of operators. The desired order
is defined by a hierarchy of the specific
operations as represented by adjective
codes and is determined by a comparison of
forcing values (a forcing value indicates
an orerator's pricrity in the hierarchy of
operators) . (Refer +to Appendix B, Figure
18, for a list of the various operators and
their corresronding forcing values.)
Depending on the operator in an intermedi-
ate text word and its relative position in
the hierarchy cf operators, that intermedi-
ate text word is either:

e Processed (this consists of modifying
the intermediate text word by replacing
the adjective code field and the
mode/type code field, when necessary,
with a machine operation code and a
register number, respectively), or

e Stored in an operations table or sukb-
script takle (refer to Appendix B,
Figures 19 and 20).

The operations and subscript tables
function as pushdown tables in which the
top entry in the table is the most recently
entered item. (This process is known as
LIFO: last in, first out.)

The actual recrdering of intermediate
text words is controlled by a routine
(FOSCAN) that scans the input intermediate
text words. This zroutine compares the
forcing values of the various adjective
codes under consideration to determine
their disposition. Each adjective code has
a left and a right forcing value. The
right forcing value applies to the adjec-

tive code within the current input inter-

Figure 8 illustrates the data flow with- mediate text word. The left forcing value

in Phase 15. applies to the adjective code within the
oo s fm———m—— o=y r 1

SYSUT2 OR | Intermediate | | | | Modified | SYSUT1 or

Main Storage | Text j———{ Phase 15 |—————— Intermediate | Main Storage
| I | | | Text I
| I 4 L 4 R J

Figure 8. Phase 15 Data Flow

32

top entry in the operations table. The
adjective code of the first intermediate
text word of an arithmetic statement has
the highest 1left forcing value of any
adjective code except for the end-of-

statement indicator.

The first intermediate text word cf any
arithmetic statement 1is first written on
the output data set and then entered in the
operations table. The next word of the
input intermediate text for this statement
is then obtained and examined. If it is
subscript intermediate text, it is entered
in the subscript table. The following word
is then obtained and examined. When the
word (in the orperations takle) containing
the subscripted variakle is processed, the

related subscript intermediate text is
obtained from the subscript table. The
related subscript intermediate text is
always the top entry in the subscript
table.

If the word obtained from the input
intermediate text is not a subscript inter-
mediate text word, the right forcing value
of that word 1is compared to the 1left
forcing value of the top entry in the
operations table. If the right forcing
value is greater than or equal to the 1left
forcing value, the tor entry of the opera-
tions table is forced out, processed, and
written on the output data set. If the
right forcing value is less than the left
forcing value, the current word of the
input intermediate text is entered into the
operations table. The next input inter-
mediate text word is then obtained. This
comparison process continues until the
first entry (for the statement under
consideration) made in the orerations table
is forced out (by the end mark) and proc-
essed. In this way, the input data set is
reordered when it leaves Phase 15 as the
output data set.

If an attempt is made to enter informa-
tion in the operations or subscript table
when they are full, an error condition: is
recognized. An error intermediate text
word, which indicates that the statement is
too 1long and should be subdivided, is
generated and placed at the end of the
intermediate text words for the statement
containing the error.

MODIFYING INTERMEDIATE TEXT

As intermediate text words are being
reordered, they are mcdified, depending on
the operators and operands, to a form

closely resembling an instruction format.
The contents of the adjective code field
for arithmetic operators (unary minus (@),

Section 2:

+, -, *, and /) are replaced by the
appropriate wmachine operation code. The
contents of the mode field are replaced by
a register number when the operator and
operands require a register assignment.

ASSIGNING REGISTERS

Registers are assigned by Phase 15
according to the adjective code encountered
and the rode of the operands. There are
eight registers (general registers 0, 1, 2,
and 3; floating-roint registers 0, 2, 4,
and 6) that wmay be assigned Ly Phase 15.
When a.register is required for a particu-
lar creration and one is not available, the
contents of the required register are
transferred to a work area. That register
acquires "available" status and 1is then
used for the oreration.

Register assignments are made by Phase
15 according to the following rules:

e The instruction generated for the add
crerator and the floating-point multi-
Ely operator requires that one of its
crerands be in a register. The
instruction generated for the multiply
cperator fer integer quantities
requires that the multiplicand (left
operand) be in an odd register. The
even register that precedes the multi-
Flicand must ke made availakle, unless
it already contains the multiplier.

* The instruction generated for the sub-
tract operator and the divide operator
for real quantities requires that its
left operand be in a register.

s For integer divisicn, the dividend must
be in an even-odd register pair.

e A work register is assigned to each
sukscript expression to aid in the
computation of sukscript expressions by
Phase 20.

e Exponentiation requires library subpro-
grams; therefore, a specific register
is required to contain the result of
the subprogram execution.

e Registers are assigned to single and
double in-line functions, as follows:

There are eight single-argument, in-
line functions: IFIX, FLOAT, DFLOAT,
SNGL, DBLE, ABS, IABS, and DABS.
Instructions are generated to perform
the functions of the SNGL and DBLE
in-line functions. For the remaining
single-argument, in-line functions, a
word in the following format is gener-
ated:

Discussicn of Compiler Phases 33

S T T T -—=
|in-1ine | | jcode number

|function | R2 | Rl |for the |
ladjective | | |in-line function|
| code | I [|
| IS L L 1 3
1 Lkyte 1 kyte 2 bytes

Depending upon the sgpecific in-line
function, ur to three registers are
assigned by Phase 15. For ABS, IABS,

and DABS, only an argument register is
required. This register is indicated
in the R1 field; the R2 field is made
zero. For 1IFIX, FLOAT, and DFLOAT,
three registers are required: an argu-
ment register, a result register, and a
work register. The arqument register
is indicated in the R1l field, the
result register in R2. The work reg-
ister is the register preceding R1.

For in-line functions with two argu-
ments, an in-line call word is generat-
ed with the same format as for single-
argument, in-line functions. Phase 15

assigns a register to each argument in
a double-argument, in-line function.
The first argument register is
indicated in the R1 field; the second
argument register is indicated in the
R2 field. R1l is wused as the result
register.

CREATING ARGUMENT LISTS

To assist Phase 25 in the generation of
the object module instructions, -a 1list of
arguments is created when an adjective code
is encountered that represents a call to a
subprogram or to a statement function. The
argument list is preceded by an intermedi-
ate text word that defines the specific
function call. The first word of the
argument list contains the number of argu-
ments in the list, and is followed by an
intermediate text word for each argument.
The total number of arguments in all 1lists
created by Phase 15 is kept in the communi-
cation area to be used by Phase 20 process-
ing.

CHECKING FOR STATEMENT ERRORS

As each statement is processed, Phase 15
checks for specific error conditions. Gen-
eral format errors as well as specific
exrors connected with DO statements, arith-
metic IF statements, statement numbers, and
argument lists are noted. Following are
the error checks performed by Phase 15:

34

¢ DO loops are examined to determine if
the DO variable is redefined, or if a
DC locop is nested to a depth greater

than 25.

e Arithmetic IF statements are examined
to determine if the arithmetic expres-
sions contain valid symbols. They are

also examined to determine if more or
fewer than three statement numbers have
been specified.

e Statement numbers are examined to
ensure that they are uniquely defined
and do not indicate transfers to nonex-
ecutable statements.

e If a FUNCTION subprogram is being com-
piled, a check is made to determine
whether the subprogram name is defined.

e The members of an argument 1list are
examined to determine whether they are
valid. If a particular 1list has a
required 1length, that list is examined

to determine if it is of the required
length.
If any of the designated error condi-

tions are encountered, an intermediate text
word, which contains an adjective code
indicating an error and a numker represent-
ing the specific error, is generated and
placed at the end of the intermediate text
words for the statement in which the error
was detected.

PHASE 20 (IEJFRAAOQ)

Phase 20, the sixth processing phase of
the compiler, is entered either after the
completion of Interlude 15 for SPACE compi-
latiocns, or after the completion of Phase
15 for PRFRM compilations. The major func-
tions of the phase are:

e Processing of statements that require
sukscript optimization.

e Processing of statements that affect,
but do not require, subscript optimiza-
tion.

e Creating the argument list table.

Phase 20 increases the efficiency of the
object module by decreasing the amount of
computation associated with subscript
expressions. A subscript expression can
recur frequently in a FORTRAN program.

Recomputation at each occurrence is time-
consuming and results in an inefficient
okject module. Therefore, Phase 20

performs the initial computation of any
given subscript expression and assigns a
register which, at object time, contains
the result of this computation. Phase 20

then modifies (that is, optimizes) the
intermediate text for subsequent occurren-
ces of this subscript expression. This
intermediate text optimization consists
essentially of replacing the computation of
the subscript expression, at each recur-
rence, with a reference +to its initial
value (that is, to the register that con-
tains the result of the initial
computation). The subscript intermediate
text for each subsequent occurrence of the
subscript expression can be optimized in
this manner as long as the values of the
integer variables in the expression remain
unchanged.

In addition, the following functions are
performed by Phase 20:

1. Generation of ESD card images for:

a. Implied external references to
required library exponentiation
subprograms.

b. Implied external references to
IHCFCOME (that is, IBCOM#).

c. Implied external references to
IHCCGOTO (that is, CGOTO#) .
(IHCCGOTO is an implicitly called

library subprogram that aids in
the execution of computed GO TO
statements by supplying the
object-time branch addresses.)

Main Storage | Overflow
| Table

L

2. Generation of TXT and RID card images
for literals generated by Phase 20 and
argument list takle entries.

3. Generation of calling sequences to
IHCIBERR (that is, IBERR#) when source
statement errors are encountered.
(Refer to Appendix G for a description
of the IHCIBERR object-time library
subprograr.,)

4, Printing of a storage map for all

literals generated by Phase 20, and
for all implied external references
made by the source module being com-

riled, if the MAP option is specified.

5. Allocation of storage for the branch
list table for SF expansions and DO
statements.

Upon completion of Phase 20 processing,
control is passed either to Phase 30 (if
the NOCLOAD option was specified and source
module errors were detected), or to
Phase 25.

Figure 9 illustrates the data flow with-
in Phase 20.

Chart 10 illustrates the overall logic
and the relationship among the routines of
Phase 20. Table 17, the routine directory,
lists the routines used in the phase and
their functions.

T 1

| Intermediate | SYSUT2 or
|Text (sub- Main Storage
| script text
|optimized)

r 1
|ESD card image| SYSLIN
|for implied and/or
| external ref- | SYSPUNCH

= e o

Phase 20

| erences, and
| |TXT and RLD
b———+] card images

| |for generated

Intermediate
Text

SYSUT1 or
Main Storage

b e s]

g e o oy

Figure 9. Phase 20 Data Flow

Section 2:

- 4 |literals and

|
|
| for argument |
|1list table |

|

| entries
b e 4

|Map of genera-| SYSPRINT
| ted literals
jand external

| references
L

R e

Discussion of Compiler Phases 35

PROCESSING OF STATEMENTS THAT REQUIRE
SUBSCRIPT OPTIMIZATION

Phase 20 scans the input text for state-
ments that may require subscript optimiza-
tion. Subscript expressions may occur in
the following statements:

Arithmetic.

CALL.

Arithmetic IF.

Input/output lists (input/output 1lists
are treated as statements by Phase 20).

When Phase 20 encounters one of these
statements containing a subscripted vari-
able, the subscript optimization process
begins.

An index mapping takle (refer to Appen-
dix B, Figure 21), containing all informa-
tion pertinent to a subscript expression,
is wused to aid subscript processing. When
the index mapping takle indicates the first
occurrence of the current subscript expres-
sion, a register is assigned and a corres-
ponding entry is made in the index mapping
table. When a register is not available,
the register that is currently assigned to
the subscript expressicn of least dimension
is reassigned to the current subscript
expression.

If the current subscript expression has
been encountered previously, the intermedi-
ate text for its computation can be
replaced effectively by a reference to the
register assigned at the first encounter.
However, redefinition of any integer vari-
able in the expression invalidates the
previous computation and prohibits the
assignment of the same register to the
current subscript expression. In this
case, recomputation is necessary and anoth-
er register must be assigned for the sub-
script expression.

During the subscript optimization pro-
cess, Phase 20 may ke required to generate
literals connected with the array displace-
ment associated with any given sukscript
expression. (Refer to Arpendix E for a
discussion of the calculation of an array
displacement. This explanation includes a
description of the offset and CDL
(constant, dimensicn, and length) portions
of an array displacement.) Literals are
generated by Phase 20 under the following
conditions:

e When the optimization routine encoun-
ters a value outside the addressable
range of O through 4095 bytes as a
result of adding the offset (calculated
in Phase 10E) to the displacement of
the array variable (calculated in Phase
15), an offset 1literal is generated.

36

The generation of an offset 1literal
allows Phase 25 to produce instructions
involving these subscripted variables
without having to assign a new base
register.

¢ Phase 20 generates a literal for each
component cf the CDL portion of the
array displacement associated with a
subscript expression except for the
first component if it is a power of 2.
In this case, that power, instead of
the address for the literal Cl*L, is
placed in the subscript text.

The preceding discussion of subscript
optimization applies to subscript expres-
sions that are neither constant nor asso-
ciated with a dummy subscripted variable.
These two conditions are discussed in the
following paragraghs.

Phase 20 does not assign a register to a

constant subscript expression which, when
added to the offset portion of the array
displacement, 1lies within the addressable

range of 0 through 4095 bytes.
this computaticon 1lies outside +the above
range, a register is assigned for this
constant and an entry is made in the index
mapping table.

However, if

In addition to
base register is

normal optimization, a
assigned to any dummy

variable so that the variable may be
addressed during execution of the object
module. This assignment is entered in the

index mapping table.

PROCESSING OF STATEMENTS THAT AFFECT, BUT
DO NOT REQUIRE, SUBSCRIPT OPTIMIZATION

In addition to greviously mentioned
statements that require subscript optimiza-
tion, various other statements that can
affect the subscript optimization process
are processed by Phase 20.

DO _and READ Statements

The DO and READ statements sometimes
cause the redefinition of the integer
variable(s) in a subscript expression. Any
integer variable that is redefined becomes
a bound variable. Any encounter of a bound
variakle causes Phase 20 to examine the
subscript expressions that are assigned
registers in the index mapping table. A
bound variable in a subscript expression
invalidates any previous computation for
that expression and causes a new register
to be assigned for that expression.

Referenced Statement Numbers

When a statement number is referred to
in other statements (for example, a GO TO
statement), Phase 20 does not know if the
values of previously encountered integer
variables can still be used by subscript
expressions containing these variables.
Because any given variable may now be a
bound variable, Phase 20 deletes all reg-
ister assignments (in the index mapping
tabkle) for subscript expressions involving
that variakle.

Subprogram Arqument

Any subprogram argument that is an inte-
ger variable causes redefiniticn of that
variable and, therefore, invalidates any
previous computations of subscript expres-
sions containing that variable. All reg-
ister assignments (in the index mapping
table) for subscript expressions involving
that variakle are deleted.

CREATING THE ARGUMENT LIST TABLE

A count of the number of arguments
contained in the source module for subpro-
gram and SF (statement function) calls is
passed to Phase 20 via the communication
area. This number is used by Phase 20 to
allocate storage for the argument 1list
table. Phase 20 allocates a word (4 bytes)
for each argument, and inserts the relative
address of each argument in the argument
list talkle.

If an argument is a subscripted vari-
able, its address is not known at this
time. Instructions are generated to load

the address of this argument into the
argument list table at object-time.

The table is used at object-time to
provide the addresses of argument lists to
the subprograms and SFs being called.
Refer to Appendix F, Figure 45, for the
format of the argument list table.

For each subprogram name or SF name
encountered, Phase 20 generates the
appropriate calling sequence. A register

is used to supply the referenced subprogram
or SF with the address of 1its argument
list. Phase 20 also generates RLD and TXT
card images for each entry in the argument
list table.

Section 2:

PHASE 25 (IEJFVAAQ)

Phase 25,
of the compiler, is
completion of Phase 20.
of the phase are:

the seventh processing phase
entered after the
The main functions

e Generation of object module instruc-
tions.
e Completion of object module tables.

Phase 25 creates the okject coding for
the FORTRAN scurce module from the inter-
mediate text entries and the overflow table
(refer to Appendix C). TXT card images for
instructions are generated and then written
on the SYSLIN data set (if the LOAD option
is specified) and/or the SYSPUNCH data set
(if the LCECK ortion is specified).

Several tables (branch 1list table for
statement numbers, branch list takle for SF
expansions and DO statements, and base
value table) are used by the object module
during execution of the instructions gener-
ated by Phase 25. These tables are assem-
bled in their final form by Phase 25.

In addition to the above functions,
Phase 25 generates: (1) a listing of ref-
erenced statement numkers if the MAP option
is specified, and (2) an object module
listing if the object 1listing option is
specified and if the okject listing facili-
ty of the compiler has been enabled. The
okject module listing contains the machine
language instructions generated by Phase 25
and their equivalent assembly language
instructions. The equivalent assembly lan-
guage instructions are generated by an
object listing module (IEJFVCAQ) that Phase
25 1locads (via the LOAD macro-instruction)
into main storage.

Uron completion of Phase 25 processing,
control is passed to Phase 30 (to generate
error/warning messages and to process the
END statement).

Figure 10 illustrates the data flow

within Phase 25.

Chart 11 illustrates the overall 1logic
and the relationship among the routines of
Phase 25. Table 19, the routine directory,
lists the routines used in the phase and
their functions.

Discussion of Compiler Phases 37

|TXT card

| images for
|instructions
|and RLD card
| images for
|address

| constants

SYSLIN
and/or
SYSPUNCH

———— e e

|Map of refer- SYSPRINT

———— sjenced state-

| rent numbers

[— T
SYSUT2 or | Intermediate |
Main Storage | Text |
L 1

Figure 10. Phase 25 Data Flow

GENERATION OF OBJECT MODULE INSTRUCTIONS

Phase 25 creates the object module
instructions for the FORTRAN source module
from the intermediate text entries and the
overflow table. The resultant obkject
module instructions are in the RR, RX, and
RS formats of the System/360 instructions.

The control routine (PRESCN) for Phase
25 obtains each intermediate text entry and
examines its adjective code. The adjective
code determines which Phase 25 subroutine
is to process the current entry or the next
series of entries. The processing subrou-
tine generates the required object coding.

Intermediate text entries for operations
within arithmetic expressions are almost in
a final instruction format as a result of
Phase 15 processing. The intermediate text
words generated by Phase 15, for arithmetic
expressions, contain all the elements
required for the RX format instruction:
operation code, result register, base reg-
ister, and displacement. When Phase 25
encounters an adjective code indicating an
arithmetic expression, control is passed to
the routine (RXGEN) that generates RX for-
mat instructions.

Other intermediate text entries still
resemble the output generated by Phase 14.
An adjective code identifies the type of
entry and possibly several entries that
follow it. Variocus Phase 25 subroutines
analyze these entries and generate the
appropriate instructions.

38

e e e e el

|
e

SYSUT1 or
Main Storage

| Branch List
| Tables and
| Base Value
| Takle

L

R e e]

If a subprogram is keing compiled, Phase
25 generates an epilog table when the
FUNCTION or SUBROUTINE adjective code is

encountered. The epilog table provides
Phase 25 (when it encounters the RETURN
statement) with the information necessary

for the generation of instructions that
return the new values of variables, used as
parameters, to the calling program. This
information consists of the following:

¢ Length and address of the wvariable in
the subprogram.

* The relative position of the variakle
in the parameter list of the calling
program.

Refer to Appendix B, Figure 22, for the

format of the epilcg table.

COMPLETION OF OBJECT MODULE TABLES

Several tables are used by the object
module during the execution of the instruc-
tions generated by Phase 25. These tables,
assemkled in their final form by Phase 25,
are:

e The tkranch list table for
statement numbers.

referenced

e The branch list takle for SF expansions
and DO statements.

e The base value takle.

Branch IList Table for Statement Numbers

Phase 12 allocated storage for a branch
list table (refer to Appendix F, Figure 43)
for referenced statement numkers. Each
statement number referenced by a GO TO,
computed GO TO, IF, or DO statement was
assigned a number relative to the start of
the branch table. This relative number was
placed in the chain field of the statement
number entry in the overflow table (refer
to Appendix C).

When an intermediate text entry for a
statement number definition is recognized
by Phase 25, the corresponding overflow
table entry is obtained, and the relative
number, assigned by Phase 12, is wused +to
determine the positicn of the statement
number in the branch table. The value of
the location counter is placed in this
position and is the actual relative address
of that statement.

Two instructions are generated for the
portion of a FORTRAN statement that ref-
erences a statement number. The first
instruction 1loads the address portion of
the proper entry in the branch table into a
general register; the second instruction
branches to the address placed in that
general register.

Branch List Table for SF Expansions_and DO
Statements

A second branch list table is completed
by Phase 25 for statement function (SF)
expansions and DO statements. Phase 14
assigned a unique number to each SF and
placed this number in the pointer field
portion of the intermediate text entry for
each SF. Phase 25 uses this number to
assign a location in this second branch
list takle when it encounters an SF adjec-
tive. code. The address of the first
instruction in the SF expansion in question
is rlaced in this location.
referencing this SF uses the number of the
SF to obtain this location in the branch
list table, and branches to the address in
the 1location (that is, to the keginning of
the SF expansion).

Phase 25 also assigns each DO statement
a location in this bkranch list table. The
address of the second instruction of the DO
loop in question is entered in the proper
location. The object module instruction
that controls the iteration of the DO 1loop
obtains this 1location in the branch list,
and kranches to the address in the location
(that is, to the beginning of the DO loop).
Refer to Appendix F, Figure 44, for the

Section 2:

Any statement’

format of +the branch 1list takle for SF
expansions and DO statements.

Base Value Table

The base value table (refer to Appendix
F, Figure 46) is continually generated by
the various phases of the compiler as base
registers are required for the object cod-
ing. 2Aan object module can only use general
registers 4, 5, 6, and 7 as base registers.
(When the object module is entered at
object-time, these registers are initial-
ized from entries in the base value table.)
If the base register requirements for the
object module extend beyond the four avai-
lable registers, the base value table is
used to take special action.

During compilation (prior to Phase 25),
the value for each base register to be used
by the okject module is inserted in the
base value table, regardless of the general
register number used as the base register.
The first entry in the base value table is
the value placed in register 4; the second
refers to register 5; etc.

For a source module for which the com-
piler assigns registers 4 and 5 to ref-
erence data in COMMON and assigns registers
6, 7, and 8 to reference data and instruc-
tions in the object module, the base value
table contains the following values:

=

o —

Register

Value 0

8192 |

T
|
F——
+

|

L

o e Sy e =y
e - —

The value 8192 is initially assigned to
general register 8, and that register num-
ber is entered in the intermediate text
entry requiring the kase register. Howev-
er, when Phase 25 encounters this interxr-
mediate text entry with a base register
number of 8, an instruction is generated to
load the value 8192 into register 7, and
general register 7 is used as the base
register in this instruction.

In general, when a base register other
than 4, 5, 6, or 7 is encountered by Phase
25, the base value tabkle is used to oktain
the value of that bLase register, and an
instruction is generated to load that value
into register 7. Register 7 is used as the
base register in the instruction at object
time.

Discussicn of Compiler Phases 39

PHASE 30 (IEJFXAAQ)

Phase 30 is the eighth and last process-
ing phase of the compiler. The phase may
be entered either after the completion of
Phase 20 processing if the NOLOAD ortion
was specified and errors were detected in
the source module or after the completion
of Phase 25 processing. The functions of
the phase are:

* Producing error and warning messages.
e Processing the END statement.

When Phase 30 is entered from Phase 20,
only the first function (producing error
and warning messages) is performed. Howev-
er, when Phase 30 is entered from Phase 25,
both functions are carried out.

Upon the completion of Phase 30 process-
ing, control is passed to Phase 1.
data

Figure 11 illustrates the flow

within Phase 30.

Chart 12 illustrates the overall logic
and relationshir among the routines of
Phase 30. Table 20, the routine directory,

lists the routines
their functions.

used in the phase and

PRODUCING ERROR AND WARNING MESSAGES

Phase 30 checks the adjective code of
each intermediate text word for an error or

the error or warning condition) from the
mode/type field of that intermediate text
word. This number is used as an indexing
value to obtain the length and address of
the actual message corresponding to the
specific error or warning detected.

The 1length of the message is obtained
from the message length table. The address
of the message is obtained from the message
address table. The actual message is
obtained from the message text table.
(Refer tc Appendix B for a description of
the wuse and format of the message tables.)

When the message length and the message
address are obtained, Phase 30 then prints
the corresponding message on the SYSPRINT

data set. (For a description of the messa-
ges capable of being generated by the
compiler refer to the puklication IBM

System/360 Operating System: FORTRAN IV (E)

Programmer's Guide.)

PROCESSING THE END STATEMENT

When the intermediate text entry for the
END statement is recognized by Phase 25,
control is passed to Phase 30. Phase 30
first produces any error or warning messa-
ges detected by earlier phases of the
compiler. Phase 30 then writes both branch
list tables and the base value table onto
the output data set(s). Because all three
of these tables must ke relocatable, all
entries in the tables are entered in RLD

warning condition. If one is encountered, card images, as well as in TXT card images.
Phase 30 obtains the error or warning Phase 30 also creates the END card image
number (set up by the rhase that detected for the object module.
: - 1 r 1
SYSUT1 or | Branch List | | Size of COMMON | SYSPRINT
Main Storage | Tables and | | and Object |
(only if | Base Value | | Module |
entered from | Takle | | (in bytes) |
Phase 25) L 4 —————— e
r -1
\ ------------ / List of Error | SYSPRINT
| Phase 30 | | and Warning |
[® nessages |
———————————— ‘ | (if any) |
L -
- T - 1
SYSUT2 or | Intermediate | | TXT and RLD card| SYSLIN
Main Storage | Text | | images for | and/or
e 4 | Branch Lists and| SYSPUNCH
| Base Value |
| Table, and END |
| card image |
| AP J
Figure 11. Phase 30 Data Flow

40

SECTION 3:

CHARTS AND ROUTINE DIRECTORIES

The following charts describe the overall logic of the major components of the FORTRAN

IV (E) compiler.

Routine directories

numerous routines and subroutines.

Flowchart Conventions

FUNCTIONAL SVMBDLS

HHERALRRA RN
*

PROCESSING
BLOCK

PR RS

*
*
*
*
*

ERAERAFERRERRE RSN

o¥a
B1 *e

o *o
«* DECISION #,
*o BLOCK o

*e ¥

EERRC]ENRR AR ERN
* TERMINAL
* BLOCK *
» *

FRERERANRRRRERR

REEACORNRRBER SN
*

* USER ENTRY *
* *

HRENREE R AR LN

SAMPLE FL

ERRRRCTRRRRRERERR
*

EEE]
.k

L T TR T

EERERD L HRREEENE
* *

* MODIFICATION #*
* BLOCK *

> *
P I T

R R e T T
* INPUT/OUTPUT #
BLOCK
» *

% EEEERR N

HRRRRE] RN
* » L
B e i]
#* SUBROUTINE #
* B8LOCK *

*
LI T

*
* USER EXIT
*

xx%
A

P

HRGLEREREAE
* *
* PREDEFINED #
* PROCESS *
- BLOCK *

* *
e

ERERH RN
*
*VARIABLE RETURN#<.
ON-PAGE - -
CONNECTOR IR NN
WRE RN EN

v
RN

*xx
ok

c3
EEEE
OFF-PAGE

CONNECTOR
ERERREREE

L N N N L T I T, T I T MM mMmMmMmMTIImMM T T I™MT ™
R e I I I M mmMMmMTTTIIITIT™

AZ=OODDO mmzurl

GOTO v

EEARRETHRERNE T RNR
SUBNM ZCA1
Lt It 2 S SR
* *
* *

* *
R e

o® *, *
>#

>| LINE JUNCTION

EERRHTEE RN
* *
R W e N B
* *
* -

* . *
P S T T R T

DUICHART

BLOCK C3 1S ENTERED FROM THIS CHART AND FROM
AT LEAST ONE OTHER CHART.

THE TERMINAL BLOCK IS USED TO SHOW USER ENTRY
AND EXIT POINTS WHEN THE PROGRAM BE
FLOWCHARTED 1S AVAILABLE TO AN IBM CUSTDMER.
T ALSO USED AS AN EXIT CONNECTOR WHEN

THE TO LOCATION IS TO NO SPECIFIC CHART AS IN
A MULTIPLE USE SUBROUTINE.

THE INSTRUCTION AT SYMBOLIC LOCATION GOTO
CALLS A SUBROUTINE NAMED SUBNM. THE LOGIC OF
SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK
Al

(222
-
<3 =

xn

ON-PAGE EXIT CONNECTOR-
CONTROL TRANSFERS TO BLOCK C3 ON THIS CHART.

OFF-PAGE_CONNECTOR-—
CONTROL TRANSFERS TO BLOCK A2 ON CHART ZBe

LR R e I I I MMM mMmmmmm M ™M T

Section 3:

Charts and Routine Directories

are included for those components that contain

41

Chart 0O1.

IEJFAAAD
CINITIAL ENTRY)

REREALHERRBRERR
* *
- CALLING *
* PROGRAM *

W RN N

v
RRRRRD LRI RR AR RN
* START 1 *
B e e e o
.LDAD INTERFACE ’

MODULE
0 (1IEJFAGAO)
hhl"d!'ihl‘ﬁ!&id

v
RRRRBCLERRERRRRER
*
LOAD PRINT #
BUFFER MODULE #
(IEJFAKAD) :

ERERRERERRER RN

(X2 23

v
FRARRD L TR NN

B I e o S

* PROCESS *

* SPARM* *
T

* OPTION *
ARBRARRRERRR R RN

-t $

*y OPTION .
#*oSPECIFIED.#*

*g ot

LA Ll]

* F1 >

* *

* ¢ R v

a¥e

F1 *e

ot *,
¥ SPACE *4 PRFRM

-OR PRFRM OPTN.
oiPEClFIEE-*

. .
e o¥
*

RERE
* »
* 61 >

Tare” |seace
R 2227322 22 2 222 2)

* OPNFILES *
e L 2)

* OPEN DCBS *
- FOR SPACE *
* COMPILATION #
E2 2 22222 11222t
*REN
* *
* H1 #=>
* *
Ei 22
v
HERBRHERERERRERR
* START1 *
LT 2 P 2 2 Bt 2 2t)
L?AD PHASE 7 *<
* T1EJFEAAO) :

RERRRERRRRRRRRERE

xXcive
LT NPRT TR TR YR NS
* »
* PHASE 7 *
* *

RARRRERERRRREERE

42

SEE TABLE 2 FOR_A BRIEF
DESCRIPTION OF

FUNCTION OF
ROUTINE/SUBROUTINE «

RRERRRD2 RN
* *

START1
B e e e il

>#* LOAD SORSYM #
* *

MODULE
* (IEJFAXAOQ) *
HRERERERRRREE TR
AR
* *
>* F1 %
* *
*ERR
oo

€2 *e
*'SIZE'
*.

>‘.THAN OR EQUAL.

#.TO 17504 %
* o*
L

#* NO
R
l_ » »
>* G1 *
* *
(2223
P ey

* LOAD *
e B o e P BB

LOAD PERFORMe ¥*<
*

* MODULE
* (IEJFAPAO) *
L2222 222 222222l

v
RRBERGD AR AR
* OPNF]LES *
*—n e

»
» F P *
COMPILATION
P e L

THI
EACH PHASE 1

1EJFAABO
(SUBSEQUENT ENTRIES)

HERNATHERERRRRE
* *
* CALLING -

* PHASE *
ERREERRARRRERER

v
¥

B3 *e

* *e
F INAL *o
ENTRY o

RUNCMPLT

v
-uaﬁ*c3§nn§n&¢§4*
* FLUSH QUTPUT
BUFFERS FOR
* BLOCKED 1/0

*
FEREARRRERERERR R

ok kR

v
HERRADI NN NN RN
*

* CLOSE ALL
DATA CONTROL
* BLOCKS

LE R ER]

*
RN RHRRRR

L
* *
* FREE *
* ALL MAIN *
- STORAGE *
* *
* *

ARREREERRRRRERR

v
&ﬁl*lFS.Q.l*iii!i
*
’ PERFDRMANCE *
*MODULE IF PRFRM#¥
COMPILATION #*
* *

W RN RN AR

v
HAERRARGIRRREAERERR
*

* DELETE
* PRINT BUFFER
* MODULE

* % Wk ok

*
HAREREERRRERREERER

v
HREREHIHAIE LR RN

DELETE
INTERFACE
MODULE

LR R R R
kEERE

LRI 22222232 d

RET | URN

v
HRRNJIRRRERRRRS
* CALL ING
* PROGRAM :

EE2 2T 22 T2 T

D% e OPTION

Phase 1 (IEJFAAAO/IEJFAABO) Overall lLogic Diagram

B4
«¥* SPAC
«* OR PRFRM

#oSPECIFIED.#
* o*

ot
Ca *a

o* *
o* RESTART
‘.* CONDITION

-
*q o
*

o

o o
* YES

v
BRRRNDA RN AN R

LR R R X
LR E R]

DELETE
PERFORMANCE
MOD!
(IEJFAPAO
ERZ R R 22 22222 L)

“o PRFRM

v
FRAN
»

.
*e¢ NO

L2 22

HRERRCSH IR RN NN
»

* FREE ALL
* MAIN

* STORAGE
*
WA N AR

* ok R kR

v
HERRRELHERERARNNR
* RESTART *
B e e e
* CLOSE ALL
DATA CONTROL
»* »
*

Iz e re e s e 2 2l

v

HRAR
* *

* G1 *

»

R

*

Table 2.

Phase 1 Main Routine/Subroutine Directory

r T
| Routines/Subroutine| Function
|

| LOAD
|

| OPNFILES

OPTNSCAN
|
|
RESTART

| RUNCMPLT

|
I

START1

I
L

+ - _———
| Loads the performance module into main storage if the PRFRM option
|is specified.

|

|Oopens data control blocks for compiler data sets as indicated by
| switches (in the communication area) for options.

[}

— —— ———— —— ——— — k. — o]

|Scans the compiler options and sets appropriate switches in th
| communicaticn area.

Closes all data control blocks for compiler data sets.

Closes all data control blocks for compiler data sets, frees all|
{main storage allocated to the compiler, and returns control to the|
| calling program.

Performs housekeeping and loads the interface module, print buffer
module, and Phase 7.

b e s o

1

Section 3: Charts and Routine Directories 43

Chart 02.

SNEXT *

RERRALHRRERREN
: CALLING :

* ROUT INE *
L e e 2

¥ ANY
%, DCBS TO BE o
#e TCLOSED o%

e o
* YES

v
FREREC]HEREEREERR
* TCLOSE THE *
* DATA SETS * v
INDICATED IN *

#THE LINKAGE TO #
#* THIS ROUTINE #*
LR e R T 2 e L

SIORTN #
ERRUD L RSN
»

*
* CALL ING *
* ROUTINE *# *

HREAEERIIR RN N

a¥e
El *o
*

. .
o CHECK *o YES
*e OPERATIDON %
»

. -
*q o®
*, o ¥
* NO
223
* *
® F1 *—>
* *
E2 s v
ok
F1 *,
ot -
o* READ *a
o OPERATION o¥%
» ot

v
HRRERG] HHERRNRRRR
*

ISSUE WRITE #

LEE R R]

ACRO-
INSTRUCTION :

EX R R TR I Y X2 22]

HRC 2NN RN R

*NEXT PHASE/INT %
>#AS INDICATED IN#*
#* CALLING RTN #

e T2 e 2 i]

RRRERED XMW RN
* *

ISSUE CHECK *
>* — *
* INSTRUCTION #*
* *
REERRRERREERERERR

EREREF2ER R RRNE
* *
* 1SSUE READ *
>* MACRO- *
* INSTRUCTION *
» »

*

EHREERRERBRFR SRR

v
ARRRG2RERREERE R
* NORMAL RETURN #*
* T0 *

CALLING ROUTINE#
EE I IR X s 2

*
AN INSTRUCTION TO BRANCH TO THESE ROUTINES IS A

PART OF THE COMMUNICATION AREA.

ARE LABELED FNEXT, FIORTN,
FPATCH FOR SNEXT,

PATCHs RESPECTIVELY.
ROUTINES ARE NEEDED» A BRANCH
THE PROPER INSTRUCTION IN THE

TO

COMMUNICATION AREA IS EXECUTEDe

-n

THE CALLING ROUTINE MAY BE WITHIN A

PHASE
MODULE ROUTINEs OR WITHIN THE
PERFORMANCE MODULE.

FRRNJEERREERR R
*

»
* CALLING *<
* PHASE *
LS a i T 222 2]
CONTINUES

NORMAL

PROCESSING

HRREK L RRERRRERSL

* *
* SCHEDULER *<
* *

I]
ISSUES ABEND
MESSAGE AND

THEN CONTINU
NORMAL PRDCESS!NG

n

WITHIN ANOTHER INTERFACE

[i S R S L el
* RETURN TO *
INTERFACE#*
AND #<

;;-iixz‘-niaiwan&
*PHASE 1 PASSES

* ABORT CODE TO *(
‘ SCHEDULER

****l*ﬂ****“l!lll

THESE INSTRUCTIONS

Interface Module (IEJFAGAQO) Routines

PRTCTRL *
REREATREREKREER
* *
* CALLING *
* ROUTINE

*
EE TR TS T 22 L)

v
HERERDIEERRRERERS
*
MOVE CARRIAGE *
CONTROL CHARe #*
T0 OgTPUT *
»

BUFFE
L e e T R L

LEE R X]

v
FRBRRCTHERERRERRE

% SIORTN 02E1 #
Tt W B N W — W= R

"HRITE CONTENTS #——

Of OUTPUT *
‘ BUFFER *
P I T L e

*e oF
* YES

v
ERRERFIHERERRRRRN
*

*
SET ERROR *
* OR END-DF- *
* DATA SET *
* INDICATOR *
E2 2222222222 s dsd

v
HRENGIHRERENRRR
ABNORMAL RETURN#
* TO *

CALL ING ROUTINE#
PRI TR 2

RRRRHIERRERRRE S
INTERFACE MOD *
* AND BSAM *
ROUTINE #*¥%% %

P I T T

HRRRRCIRRRER R

* *
#* CALLING PHASE *
* PHASE 1 *
* *
22222222222l al]

BRANCHES TO *<

AT AL WX
* SIORTN 021 #
PR St B B DS L Bl Tt g
—>#% CHECK RESULTS #*
* OF WRITE *

* *
Ee 2222 22 2222

v
EERBCHERREIE NN
* NORMAL RETURN *
* *

TO
*#CALLING ROUTINE#
HRRRRERERER RN

-
*#.DATA SET %
A o*

FREEGYHE TR NN

* CALLING * v
* ROUTINE *<:

* *

E e s e]

COMPILE-TIME I/0 RECOVERY PROCEDURE

THE 1/0 SUPERVISOR 1S
ENTERED FROM THE SIORTN
OF THE INTERFACE MODULE
WHEN A READ, WRITE, OR
CHECK MACRO-INSTRUCTION
1S ISSUED.

ERRRRJLERREREREES
* *

NUMBER OF *
T S *
REREEERRENRRRRRRR

HERRRLGERERRERERN
* *
CALLING PHASE
*#SETS ABORY BIT *<
* IN COMM AREA #
* *

HRENN TR AN

HRERDGEER R RE R
ABNORMAL RETURN#
>* T0 *

*CALLING ROUTINE#
LRI I A T AL g

PATCH *
HRERESHREREERER
* CALLING *

* ROUTINE *

* *

WRERNRERR RS EN

PATCH
REQUIRED

-
*. o
*

o ok
* YES

v
RERERGSEERENERR RN
* *
PATCH INDICATED®
AREA IN CALLING
* ROUTINE *

* *
EE R I s a s

,RRR

2 22]

* RETRY * ot HAS
># APPROPRIATE #—————>#%, ERROR BEEN %
*

*eCORRECTED #
* g ¥
*e o®

* NO

v
FERFRKSHRERERE R
* RETURN ABORT *
CODE TO BSAM, *
* INT MODs» AND *
#PHASE REQUEST- *

* ING 1/0 *
ERERRAERRRRERERAR

Chart 03. Performance Module (IEJFAPAO) Routines

PIORTN PNEXT
HEREIAL AR NI N HREREASHEIRE R RRR
REREALREERRERAR AT RN Q BUILD TCLOSE * * TCLOSE THE *
» * * * * * INDICATED *
* CALLING * * CALLING '————————>“ !ND!CATED IN * >* DATA *
* PHASE » * PHASE * LINKAGE * * CONTROL *
L 2 2 2Ty Ty Y l PARAMETER * * BL.OCKS *
v v
P o,
31 *. RN RRE DR NN R EX T EYESRTIRT YT Y B8S *g
ok * SIORTN 02El * * * o* IS *o
*1S BLDCK]NG'- NO Rt bbbt ol * #0BTAIN NAME OF * YES <% NEXT *o
*FACTOR GREATER o #———> % PERFORM * #*NEXT PHASE FROM'(———————‘-COMPONENT AN o %
*o THAN 1 o¥% * REQUESTED * ’ BLDL TABLE *o INTERLUDE . *
* o* # QOPERATION * *. o
Xy o¥ P I TR TR A »u»&a«»au**Qna»&* *a o
* YES * NO
v
EE xc|TL
* *
v * G2 *
HRERRC] HERERIE RN * * v
* OBTAIN LAST * L2223 FRRRCSHEERE XS
BUFFER ADDRESS # * *
FOR THE DATA # * NEXT PHASE *
* SET USED FOR #* * *
* DOPERATION * RN R NN RN
RN RN RN
v
PTESTWR1 ¥y LY PTESTRD ok,
HHRRID] IR NR D2 *e D3 *. D4 *,
* MOVE LOG RCD ¥ % WAS %, o® ¥ FIRST #.
#*INTO OUTPUT BUF* NO oLASY REQUEST#*, YES % CHECK «*1/0 REQUEST*. NO
UPDATE BUF PTRe#<—————%,FOR THIS DATA¢# %, REQUEST ———————>#.,FOR THIS DATA.
AND LOG RCD * . T ¥ *e o *e SET o*
%#eREAD o% *e -* *e o*
P e ¥e o# *e o¥ E, ¥
#* YES * * YES kW
*
% G1 *
* *
RN
v v v
ot ok, oW
E1 o E2 *, RN NE TN NE Es . FRRERESHER SR HENRN
¥ *e % ANY ¥, * SIORTN 02E1 * A *, * *
NGO <% OUTPUT *e «* RECORDS #. NO Fm e W N — o* READ *o YES * SET *
% BUFFER % *e LEFT TO BE o F—————D* INITIATE * *o REQUEST o F————— # *READ* *
*4 FULL o -DEBLOCKED- * CHECK-READ * *o o* * BIT *
*, ¥ *, * OPERATION * *o . * *
L] *e ox PR T e Y e ¥ o AR RN RN R RN
* YES * YES * NO
R L2 2 2]
* * * *
* F2 *—> * FS #—=>
* * * *
e v E s
v PGETRCD v ety v
HRERRE L HEEERR R NR HENREE2HE RN RN F3 *. F4 >
* * * MDVE NEXT LUG * ok *o * INITIALIZE * * SIURTN 02El *
* RESET LOGICAL ¥ o* ABNORMAL %, NO *#LOGICAL RECORD # #=d—d—d—dod—dod
RECORD COUNT, # ‘REQUESTED AREA- *e RETURN o #*COUNT TO VALUE * PERFDRM *
#SET 'WRITE! BIT# ‘ UPDATE LOG *q .t ! # OF BLOCKING #* * REQUESTED *
* * RCD COUNT *e. ¥ * FACTOR * OPERAT ION *
(TR SR AT T v unnununu*&unu&»uu *e o v v * *
LT 2 * YES L2223 L2 22
IS » * LT »* * * *
* » * F5 & @ * * G2 # * GL *
* Gl ® * * * G2 #eD * * * *
* * LYY * * LI} L)
22 v kAR v
TSTFLUSH o®, PNORMRET ek, v
G1 *e v G3 *q HRBERGERRRRERR NN
o *o HRREG2RERRNE RN N o *, FRBRGAEN RN RN * *
0 WAS A *4 NO * * o* END=- #. YES * ABNORMAL * . SWITCH -
——D#e FLUSH - * CALLING » *e OF=FILE o D ¥ RETURN_ TO * #BUFFER POINTERS#
*oREQUESTED« % * PHASE * *e o A # CALLING PHASE # * .
e o HERRRBRERRERNN *e o LTI T Y Y ey - *
. o¥ v ®a o CLTTT TR YT T Y Y Y
* YES ETYY) * NO
* *
* G2 #
* * v
ERAE HEER
v * »
v ot * G2 *
RN LR RN H3 *, * *
* * o* WAS #, R
#SET *WRITE" BIT» «* A VALID #*. NO
FOR TRUNCATED # *q snopr BLOCK o%*
* BLOCK * *g EAD o
* * u. ok
P T R T TR 2 . ok
YES
v
Y
* *
* F5 * v
»* * P NI TR Y T

AR * SET LOGICAL *
* RECORD COUNT ¥

* ACCORDING TO #
’ LENGTH OF * I

SHORT BLOCK
»«**a*«&**u*»**l* v
LA A2
» *
* F2 *
* »
EENE

Section 3: Charts and Routine Directories 45

Chart 0O4.

IN ORDER TO DELETE
PHASE 7 FROM MAIN
STORAGEs PHASE 7 #UST

P E 7

MOVING A ROUTINE THAT
DELETES PHASE 7 INTO

THE PRINT BUFFER MDDULE
AND BY TRANSFERRING

TROL TO THE PRINT BUFFER
MODULE. THE LOGIC OF
THE DELETE ROUTINE 1S

AS FOLLOWS.

HERRGLRRRRREERS
*
* PHASE 7 »
» »
HERRRBRERRRBERS

DELETEOQO7 v
EE R PR e S 22 22 2 2
* *

DELETE *
* PHASE 7 *
* *
* *
ERRERRRRRRRRRR RN

ok,
J1 *e
¥ *e
o% RESTART #. YES
#,0R TERMINATE o#*
*e

v
FEHRRK] RRRRRERS
* *
* PHASE 10 *
* 1EJFGAAO *
R 22222222l dd)

BEGIN SOURCE
STATEMENT SCAN

46

EXE T NPz 22222
* *

PHASE 1
(1IEJFAABO)
EIZTTT IS 222 2
RESTART_OR
TERMINATE
COMPILATION

ARERATHRERERENS
*

* PHASE 1 *
*

E2 222222222 222 24

v
EERNEDIHERRSRIEER

LEE R R]

* HASE
*INITIALIZATION
*

Py T e T

£ w.
.% OR_PRFRM #. PRFRM

#o COMPILATION o%
*q ¥
*g o®

*e w
#SPACE

v
HHRERDIHEHRN RN NN

Phase 7 (IEJFEAA(Q) Overall Logic Diagrarm

TABLE 3 FOR A

EE BRI
DESCR!PT!ON OF THE FUNCT!ON

EACH PHASE 7 ROUTINE/

OF
SUBROUTINE.

v
WRRERDE MR RN

* GETSTRG * GETSTRG *
o o W o e W W W W EER EX 2R P B EL B Bt
* 0BTAIN * * 0BTAIN *
* MAIN * * AIN *
* STORAGE * * STORAGE *
v
E3 Equ
* FRSEGM * * FRSEGM *
’—I—*—i—*—’—’—*—* LR 2 2 T B B B Bt
* - * FREE *
* EXCESS MA!N * * EXCESS MAIN ¥
* STORAG * * STORAGE *
v
ke
*q FHREERRFSEERRRRERRE
*q * *
1s *+ YES * ALLOCATE *
1/ oe#————>% MAIN STORAGE *
#. BLOCKED % * FOR SPECIAL *
e o* 1/0 BUFFERS *
*, o PP LAR- A1
* NO
wune
*
* G3 %>
a2 2] v v
v oo ok,
HRRRRGIRREE RN Ga #, GS 4,
* ALLOCATE * 4 *o o *o
MAIN STORAGE # YES <% ENOUGH *e YES % ENOUGH *e
TO RESIDENT #*< *o STORAGE o . STORAGE o*
* TABLES AND * *e LEFT o# | *e LEFT o*
INTTEXT BUFS # *o ot *, ot
aanfnf«-f.uoonuaﬂ *e ot v #y o
* NO s #* NO
» *
. G3 #
» * v
EREW RNR
* *
v v * J3 *
H4 #* * *
* SEGALLOC * * * SR
———————— * # FREE_ALL *
* CONSTRUCT * #* MAIN STORAGE ¥
RESIDENT * # O0BTAINED * TERMINATE
* TABLES o .* BY PHASE 7 * COMPILATION
*RRE
*
* 93 #=>
W E
v
EZT T NI T2 I 2222 1 HERRE JA RN RN RN
* * * *
MOVE DELETE #* # ALTER PRFRM
ROUTINE INTO # # COMPILATION
PRINT BUFFER ¥ # TO SPACE »*
* MODULE * # COMPILATION *
ERER
xc|TL = * *
* U3 *
v » »
W T W NN R *EER
DELETE RTN
* IN PRINT *
BUFFER MO * RESTART
Tt I I I COMPILATION

Table 3. Phase 7 Main Routine/Subroutine Directory

[Routine/SubroutineI Function —-]
{DELETEO7 IDeletes Phase 7.]
| FRSEGM {Frees transient work area and any unusable main storage. {
| GETSTRG ’Obtains main storage for the compiler. :
| MESSGOUT :Writes messages on SYSPRINT. !
|éEGALLOC =Completes the construction of SEGMAL (begun in GETSTRG), and builds{
| |necessary dictionary and overflow table structure (independent of|
| |the source module keing compiled). |
,START :Performs Phase 7 initialization. =
iTEMPATCH iBuilds patch table by reading and then converting patch records. J

Section 3: Charts and Routine Directories 47

Chart 05. Phase 10D (IEJFGAAQO) Overall Logic Diagram

RN AZRN NN NN SEE TABLE S FOR A BRIEF
* * DESCRIPTION OF THE
* PHASE 7 * FUNCTION OF EACH PHASE 10D
* ROUTINE/SUBROUTINE.

L2222 22 L2

ii*iiBaix*iii**Q*
* START *
L I 2 N S
* PHASE *
:INITIALIZAT!ON :

Ea 2222222222222 S

>

v
222 S ekt IR 2222 2]
* *

* OBTAIN A *
* SOURCE MODULE *
* STATEMENT *
*

*
L2222 IS 22 222 22

v
XRERRDIHRREN LN X RS
ENTER STATEMENT#
*ON SYSPRINT IF *
* SOURCE OPTION %
* IS SPECIFIED *
*

*
333 3T RN

v
E2 222 IkE 2 L R L2 2L
* CLASS *
W Y e B B P e B W
* DETERMINE *
* STATEMENT *
* TYPE *
I XIS 2 22 2 222y

v
.*.
F3 *o
ot *o RERRFLEREE RN RER
o SF _OR *o YES * *
*o EXECUTABLE o >: PHASE 10E :
.*. .&. E2 22222 22 22
*y oM
#* NO
v
FRRRRGIHE R R EH ERREEGHREREREENR
* * * EOSR *
* * PROCESS * P St B Bt Bt Dt Bt Dot
* SOURCE * LD * CHECK FOR *
* STATEMENT * * END—OF — *
* * * STATEMENT *
E22 2 S22 22222 222 22 R 222222222222 22 L]

#*# SEE TABLE 4 FOR A LIST
OF THE STATEMENTS PROCESSED
BY PHASE 10D AND THE MAIN
ROUTINES AND SUBROUTINES
THAT PROCESS THESE
STATEMENTS.

48

Table 4. Phase 10D Statement Processing

r T - 1
|Statement Type |Main Processing Routine| Main Subroutines Used ++
i ! 1
3 T - T "‘|
|REAL | REAL/INTGER/DCUBLE #%| |
b 1 J I
v T 1
| INTEGER |REAL/INTGER/DOUBLE ** | Control is passed to DIM |
—— 1 o = J l
T 1
| DOUBLE PRECISION|REAL/INTGER/DCUBLE *% | |
L 1 — 1 —_— _.|
r T +
| DIMENSION |DIM ** | GETWD, RCOMA, CSORN, DIMSUB, WARN/ERRET |
1] 1
r T -7 - I -1
| COMMON | COMMON **%| DIM, PUTBTXT |
| | * | |
F -4- e -
| EQUIVALENCE | EQUIV ** | GETWD, CSORN, WARN/ERRET, PUTBTXT, RCOMA |
I | * | |
b 1 ¥ — 1
| EXTERNAL | EXTERN ** | GETWD, RCOMA, CSCRN [
v— ¥ 4 - -— - |
| FUNCTION { FUNCT * | |
I | ** | |
3 e 1 GETWD, CSORN, PUTX |
| SUBROUTINE | SUBRUT * | i
| I **| v |
: 1 e |
| FORMAT | FORMAT * | GETWD, WARN/ERRET, PUTX |
fmmm e R 1 —— 4
|* Text is created when processing this statement. |
|
| ** Table entries may be prepared when processing this statement. |
| |
|++ All routines except FORMAT use ERROR as an errxor exit for errors that cause termina-|
| tion of the statement processing. FORMAT has nc error exit. |
L ——— J
Section 3: Charts and Routine Directories 49

Table 5. Phase 10D

Main Routine/Subroutine Directcry

|Rout1ne/Subrout1ne

- -/

| -Function |

ICLASS
|

|
| coMMON

|
| CSORN
|

DIM
DIMSUB

EOS

ERRCR

EQUIV
EXTERN
FORMAT
FUNC

GET

|
|
I
I
I
|
|
|
I
I
I
I
I
I
I
I
| ¥
I
| FU
I
|
I
|
| INTGER/REAL/DOUBLE
|

| LABLU

i

LABTLU

LITCON

LOADE

PRMBLD

PUTBTXT

I
| PUTX

|
| RCOMA

I
| START

|
| SUBRUT
[
| SYMTLU

I

| WARN/ERRET
|
I
L

|Determines which routine will process the statement type. May use
| LOADE and LABLU.
|

|

4

|

|

|

|Processes COMMON statements. |

| I

| Processes names, constants, data set reference nurmbers, and DO|

|parameters. May use LITCON and SYMTLU. |

| |

|Processes the variables of DIMENSICN, COMMON, INTEGER, REAL, and|
| DOUBLE PRECISION statements.

| |

|Scans the subscript portion cf a statement that is dimensioning an|

|array. |

| |

|Processes the end of statement. |

| |

|Enters error intermediate text for errors that cause termination of|

|the processing of that statement. |

I |

| Processes EQUIVALENCE statements. |

| |

|Processes EXTERNAL statements. |

| |

|

|

|

[

|

|

|

|

|

|

|

|Processes FORMAT statements.

|
| Processes the header card image for a FUNCTION.

|Obtains a word or element in a statement and gets a new card image,
|if necessary. Prints the card if SOURCE option requested. May use
| PRMBLD.

|

|Processes INTEGER, REAL, and DCUBLE PRECISION statements.

Enters only statement number information into the overflow table.
|Uses LABTLU.

Enters all information into the overflow takle.
Processes literals.
Performs end-of-phase processing and passes control to Phase 10E.

Performs all operations associated with I/O interfacing and buffer
switching.

Puts COMMON and EQUIVALENCE text into SYSUT2 text buffers.

Puts entries into the SYSUT1 text kuffers.

Enables skipping of redundant commas in a parameter list.

|Performs initial phase housekeeping.

|
|Processes the header card for a SUBROUTINE.

|
|Enters symbols and/or units into the dictionary.
|
|Enters warning and error intermediate text for error and warning|
|conditions that permit the continuation of the processing of the]

| statement. I
'y]

50

Chart 06. Phase 10E (IEJFJAAO) Overall Logic Diagram

LAA ST LSS LA L E A SEE TABLE 7 FOR A BRIEF

* * DESCRIPTION OF THE FUNCTION
* PHASE 10D * OF EACH PHASE 10E ROUTINE/
* * SUBROUTINE.

33696 I I 3 W I W KN

v
WD TR RN

* START *
Fm e R N R N N — N
* PHASE *

*INITIALIZATION #
* *

EX I TS X222 2 2 2 s st

>

v
*****C3******}*l*

*OBTAIN A SDURCE“
* MODULE *
* STATEMENT *

*

*
[T E 22222 22222

v
HRERAEDIHAEX NN XN
ENTER STATEMENT
*ON SYSPRINT IF #
* SQURCE OPTION *
* 1S SPECIFIED #*
* *

EE X222 XTI RIS 2L]

v

I TR
* CLASS *
o
DETERMINE
* STATEMENT *
* TYPE

EX TSI 22 R S 2 R 2 2 2 2

v
ote
F3 *, ****iF4§*#lli*!il FHH NN SR NN XN
ok *, END * EXIT *
o ¥ *o YES Q-*-i-ﬁ-*-*-i—&-i Lot B Bl D DX 23 L D
e STATEMENT R > PROCESS *. >*PERFORMS FINAL #*
*e ok * END * * PHASE 10E *
a o * STATEMENT * * PROCESSING *
He o 22T eI TR L Yy L) LI IR T AR T L
* NO
v
WRERNGTHNNNERERER .00**G4&#IQQQ&O#“
* * EOSR
* # PROCESS * *—l—*-*—l—&—{-’—&
* SOURCE *< > * CHECK FOR *
* STATEMENT * * END-OF - *
* * * STATEMENT *
RN RN NN AR R IR e R e s
v
¥,
HS *q
HRERHGER TR XRR «% SPACE %,
* * SPACE «* OR PRFRM ¥,
* INTERLUDE 10E #{———————%, COMPILATION +%*
* * *q o ¥
EZ 22T 2L R 2 22 23 * o o ¥
Ko o¥
*PRFRM
\
SEE TABLE 6 FOR A LIST OF AR NI L L b ot A bt
THE STATEMENTS PROCESSED * *
BY PHASE 10E AND THE * PHASE 12 *
MAIN ROUTINES AND SUB- * *
ROUTINES THAT PROCESS RN

THESE STATEMENTS.

Section 3: Charts and Routine Directories

51

Takle 6.

Phase 10E Statement Processing

|Statement Type
N

T T
| Main Processing Routine]

Main Subroutines Used ++

=

1]
r T - - _‘l
| ARITHMETIC | ARITH * |CSORN, PUTX, GETWD, SUBS (ARITH may pass controlj
i [**|to ASF, DC, and GO) |
L 1 . ———— 4
r T 1
|SF | ASF * |CSORN, GETWD |
| | **| |
F + —o=———mee 1
| CALL | CALL * |PUTX, GETWD, CSORN (exits to ARITH)
| | **| |
b { N — 1
| DO | DO * |ARITH, CSORN, GETWD, LABLU, PUTX |
| | **| I
. b Fromm e -4
|GO TO | GO * | |
| | **| I
b -—— - JARITH, GETWD, LABLU, PUTX, CSORN, WARN/ERRET |
|COMP GO TO | GO * | [
| | **| |
1 ——— 4 [- - (]
L e T T |
| IF | SURIF * |GO, PUTX (exits to ARITH) |
| | **| |
p-—- 4 e - - -1
| READ | READ/WRITE * | |
| I ** |
8 $m—— -{GETWD, CSORN, PUTX, LABLU (exits to ARITH) |
|WRITE | READ/WRITE * | |
i | **| I
e 3- -1 4
| FORMAT | FORMAT * |GETWD, WARN/ERRET, PUTX |
-------------- . - 1
| CONT | CONT/RETURN * |
t +- {GETWD, WARN/ERRET, PUTX |
| RETURN | CONT/RETURN * |
F $ B - 1
| sSTOP | STOP/PAUSE * | |
—————————————— —— -{GETWD, PUTX (exits to CLASS) |
| PAUSE | STOP/PAUSE * | |
'r + + - 1
| BACKSPACE | BKSP/ * | |
| I ** | |
b 1 | I
| REWIND | REWIND/ * |CSORN, GETWD, PUTX |
*k
I) |
r 1
| ENDFILE | ENDFIL * |
| | **|
l,_______ L L —— ——
|* Text is created when processing this statement.
I
| #* Table entries may be prepared when processing this statement.
|
| ++ All routines except FORMAT and CONT/RETURN use ERRCR as an error exit for errors
| that cause termination of the statement processing. |
L —— ——— —_——— —_ 3

52

Table 7. Phase 10E Main Routine/Subroutine Directory

r
|Routine/Subrout ine

T . 1
i Function |
o - ¥ . -- - -
| ARITH |Processes arithmetic statements. May use SUBS. |
I I
| ASF |Processes the parameter list of a statement function. |
| I
| BKSP/REWIND/ENDFIL |Processes the BACKSPACE, REWIND, and ENDFILE statements. |
I | |
|CALL |Processes the name of a CALL statement. |
| I I
| CLASS |Determines which routine will process the statement type.
| | |
| CONT/RETURN |Processes CONTINUE and RETURN staterents. |
| | I
| CSORN |Processes names, constants, data set reference numbers, and DO|
| |parameters. May use LITCCN and SYMTLU. |
I | |
| DO |Processes the DO statement and implied DOs. |
1 | I
| END |Processes the END statement. |
| I I
| EOSR |Processes the end of the statement. |
| ! I
| ERROR |Enters error text into the intermediate text and terminates the]
| |processing of current statement.]
I | !
| EXIT |Performs end-of-phase processing. |
I [|
| FORMAT |Processes FORMAT statements. |
| I
GETWD	Obtains a word or element in a statement and gets a new card
	image, if necessary. Prints the card if SOURCE option is
	requested. May use PRMBID.
Go	Processes the statement number branched to by an IF, GO TO, or
	computed GO TO statement.
I	
LABLU	Enters only statement numkber information into the overflow
	table. Uses LABTLU.
I	
LABTLU	Enters all information intoc the overflow takle.
I I	
LITCON	Processes literals.
PRMBLD	Performs all operations associated with I/0O interfacing and
	buffer switching.
I I [
PUTX	Puts entries into the intermediate text buffers.
	[
READ/WRITE	Processes the portion of the statement preceding the I/0 list.
I I I	
START	Pexforms Phase 10E initialization.
I	l
STOP/PAUSE	Processes the STOP and PAUSE statements.
	I
SUBIF	Begins the IF statement processing.
I	
suBS	Processes subscript variakles.
SYMTLU	Enters symbols and/or units into the dictionary.
{	I
WARN/ERRET	Processes warning and error conditions that do not prevent
	completion of the processing of the current statement.
L L — 4

Section 3: Charts and Routine Directories 53

Chart 07.

HEREALRRRRE RN
» *
* PHASE 10E OR #*

INTERLUDE 10E
P e A

nn:nua]’!nn.q.;t;
I-Q—I-I—&—:-*—ﬁ—&
*!N!TIALIZAT!ON :
:ip'uulvuﬁaaauaa:

HRERRC] HHRERRRREER

*#ASSIGN ADDR TO *
#VAR<AND ARRAYS #*
* IN COMMON *
P I T e e 2 e 2

EITITI IR TR TN Y
EQUIVP E4¥
Wt W R e B B B
* PROCESSES *
EQUIVALENCE

* TEXT *
P A et

R RNE L AR NN

#* INCReLOCATION %
#CNTR BY SI1ZE OF¥
* COMMON *

L T e e s e

v
ARARE L AN NN
* DPALOC *
E R e ot
* ASGN ADDR TO #
#* DBL-PREC VAR, *
#ARRAYS IN DICT.#*
ERRERRERERRRERR RN

v
ERRRRGL TR ERE AR
* o *
L e S it
#* ASGN ADDR TO %
% REAL AND INT #*

*VAR AND ARRAYS #
FRERNRN R RRE AR

il&l{H]iXi'!Q&}ﬂ&
* ALOC *
B e
ASGN ADDRESSES #
* TO EQUATED *

VAR
RN RN RN

LTI NFR I TR TR T 2
* LD *

o O e e ot et]

*LINE FUNCTIONS i
EXTT IR T vy

RRRRUK]RERRRRRERN
* AS L *
B e e e
#PREPARES BReLSTH*
* TABLE FOR *

* STAT. NOS. *
FARERRRERRRRRRRRE

54

Phase 12 (IEJFLAAO) Overall Logic Diagram

SEE TABLE 8 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 12 ROUTINE/
SUBROUTINE.

COMALO USES THE
ALOWRN/ALERET

SORSYM#%, GETCOMI,
AND GETCOM SUBROUTINES

CARD IMAGE
PREPARATION

#*#% STORAGE MAP
PREPARATION

FRRRDGEERRE RN
* *
* COMALO *
* *

EE T s

v
HRERNE G RN RN RN
* *

EXTCOM USES THE EQUSO01
ALOWRN/ALERET Ho e Rt R
SUBROUTINE *PROCFIRST NAME®*

#* IN AN EQUIVe *
*

* GROUP
KNI NI NN

v
RN G F RN

OPALOC USE THE * EQUS03 *
INTDCTs EQRSRCH, F R R RN N
SORSYM##, AND *PRDC-REMAXNDER *
DELETE SUBROUTINES QUIVe ‘

SALO USES THE
INTDCTs EQSRCH,
AND SORSYM¥*#
SUBROUTINES

. R uP
"ﬂ*%lilll##***ll

v
ERRBRGAHTRERERERS
* EQUS14 *
PR B B 2 T e B 2t
PROCeALL EQUAT—%
* ED VAR AND *
ARRAYS IN COMM.
EAZ R AL 222 2222 st

v
ALOC USES THE R G RN RN
INTDCT, ALOWRN/ * *
ALERET» EQSRCH» * EXTCOM *
»* *

AND DELETE SUB-
ROUTINES

LDCON USES THE
INTDCTs ESD¥,

ROUTINES

{"liKZIl!ll&i{*ﬁ

l—*—i—*—l—i-!—*—*
>* REPL PTRS TO %
*VAR USED IN SUuB¥%
#SCRIPT EXPR/ADR¥
RERERBERXREREHERN

>*

N T R

* *
* PHASE 14 *
* *

EEEERERERRRERRS

HRRNHC TR RN RN
* SORLIT *
——*—l—i-.—'—l—l

ASSIGN ADDR *
*TO LXTERALS IN *
* DICTIONARY %
EREERERREERREERERRE

Lz s 22 2222]

SORLIT USES THE
*y
SORSYM*#*, GUFILE

AND RLD* SUBROUTINES

EQUS01 USES THE
GETEQUIV, EQSRCH,
RENTER/ENTRs AND
ALOWRN/ALERET
SUBROUTINES

EQUS03 USES THE
GETEQUIV, EQSRCH,
RENTR/ENTRs AND
ALOWRN/ALERET
SUBRGUT INES

EQUS14 USES THE
SWROOTs EQSRCH»
AND ALOWRN/ALERET
SUBROUTINES

Table 8.

Phase 12 Main Routine/Subroutine Directory

r T
|Routines/Subroutine|
L L

Function

v

|ALOC

|

| ALCWRN/ALERET
|

| ASGNBL

|
| COMALO

I
|
| DELETE

I
| DPALOC
|

|
| EQSRCH
|
| EQUIVP
|
| EQUSO01

|
| EQUSO03
|

|

| EQUS1Y
|

|ESD

|

| EXTCOM

|
| GETCOM/GETEQUIV
|

|
| GETCOMI

I
| GOFILE

I
| INTDCT

|
| LDCN

RENTER/ENTR

|RLD
SALO
SORLIT

| SORSYM
|

SSCK

STARTA
SWROOT

TX

|
I
|
|
|
|
| TXT
L

4
|Assigns addresses to all equated variakles.

| Processes the error and warning conditions detected in Phase 12.

|Allocates a branch list position for each referenced stnt.

|

|Assigns
| removes

no.

addresses for variables or arrays to be placed in COMMON and
these variables from the appropriate dictionary chain.

|Removes dicticnary entries from chain.

:Assigns addresses to all dcuble-precision variables or arrays
|entered in the dictionary.

|Checks for variakles previously equated to a root.

{Performs equivalence processing.

:Processes first name in an EQUIVALENCE groug.

:Processes remainder of EQUIVALENCE group and switches root if

| necessary.

|Processes all equated variables and arrays in COMMON.

|Processes ESD card images.
|Enters size of COMMON in the cormunication area.

|
|Updates COMMON or EQUIVALENCE text pointer and reads in text records
| when necessary.

|Initializes pointers and I/0 parameters for COMMCN-EQUIVALENCE text.

|Generates card images for data sets SYSLIN and/cr SYSPUNCH.
|

|Retrieves entries from the dictiomary.
]

| Processes
|Also prepares ESD section definition
|module and COMMON areas.

dictionary entries for functions and external references.
card images for the object

|Enters variables in the EQUIVALENCE table either as a root or as an
| equated variable.

| Processes RLD card images.

|Assigns addresses to real and integer variables and arrays.

|

| Assigns addresses and generates text card images for all 1literals;
|pexforms the final processing of the phase.

|

|Arranges and prints the storage map for all arrays, constants, and
| external references assigned addresses by Phase 12.

|

|Replaces pointers to variables used in
|addresses assigned by Phase 12.

subscript expressions with

|Initializes Phase 12.

|Changes a root previously entered.

| Processes text card images.
L

e o i T e S . S . o — o el — s S S, i, S e . . SOAAR, Hon, — . t, t. Srer en, mo. ts , er, s eblt smn. ad

Section 3: Charts and Routine Directories 55

Chart 08.

XA DWW W R XX N
* *
* PHASE 12 *
*

E2 222222 2L 22222

v
E2 A LTI VR L X2 S 2 &2 s

* PHINT *
L N ek b Dt 2

* PHASE *
*INITIALIZATION *
* *
3003 I

kXN
* *
* C2 *->
* *
L g

v

3% W C 2 X WK N
* PRESCN *
I Y o W P e e W — W
* OBTAIN STATE- *
* MENT AND DE- *
* TERMINE TYPE *
EE I T 222 L2 2

Q*l
D2 *e
o ¥ *o
o END *o YES
*o STATEMENT %
* g ¥
*e o ¥
Ha oW
* NO

v
ek,

E2 *q

o *q
«* FORMAT *, YES
*e STATEMENT %
*q ¥
*o ¥
g ¥
* NO

v
3R D W RN
* » *

* PROCESS
STATEMENT

* %k k ok
* %k Xk %k

RS S22 R LS

v *
Py
* *
* C2 %
x *
X AR
*#

56

Phase 14 (IEJFNAAO) Overall logic Diagram

SEE TABLE 11 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 14 ROUTINE/

SUBROUTINE.

o¥e
EZ kT 2T R R T D4 *,
* END * «%* SPACE *. RHEADSHIN KN R RN
e e e e i +* OR PRFRM %, PRFRM * *
> PERFORMS * >%e COMPILATION o¥——————>%* PHASE 15 *
*FINAL PHASE 14 * *o ok * *
¥ PROCESSING * *o o ¥ EZ S22 S22 S LSS
EE 222222222 22X R *e o¥

*SPACE

LRSS R SR S 2 Rt S S

v
W3R X £ 4 W I NN
* FORMAT * * *

L e R e e * DELETE MAIN %
>% %% PROCESS * * STORAGE *-
* FORMAT * * QCCUPIED By #*
* STATEMENT * * DICTIONARY *

E2 22 222X 2222222 363 3 3 I WX

v

%X

* *

* C2 *

* *

X WE FORMAT USES THE
CKENDOs GETWDA,
INTCONs AND MSG/

MSGMEM SUBROUTINES

SEE TABLE 9 FOR A LIST

OF THE STATEMENTS PROCESSED
BY PHASE 14 AND THE ROUTINES
AND SUBROUTINES THAT PROCESS
THESE STATEMENTS.

SEE TABLE 10 FOR A LIST
OF THE FORMAT CODES THAT
MAY APPEAR IN A FORMAT
STATEMENT AND THE SuB-
ROUTINES THAT PROCESS
THESE CODES.

WX E SN WK NN N

* *
>% INTERLUDE 14 *
* »*

EE RS 2 S 2 2L st

Table 9. Phase 14 Statement Processing (FORMAT Statements Excluded)
- T DU 1
i Statement Type | Main Processing Routine | Main Subroutines Used |
1 4 L
T T .= T ‘-'l
| FORMAT | FORMAT | See Table 10 i
% 1 ¥ -- 4
| WRITE | READWR | |
t -4 --{ UNITCK, ERROR, MSGMEM |
| READ | READ | |
|8 — (R 1 —— 4
v T T 1
| SUBROUTINE | SUBFUN | |
pomm—— + --{ RDPOTA*, MSGMEM, RPTRB |
| FUNCTION | SUBFUN | l
L } 4 e e o o o _{
r T +
| CONTINUE I SKIP | MSGMEM I
— —memmt -t - 1
| BACKSPACE | BSPREF | |
L } 4 l
v T 1
| REWIND | BSPREF | OUNITCK, MSGMEM [
prm e m oo + -~ |
| ENDFILE | BSPREF i |
b ¥ S - 1
| DO | DO | CKENDO, ERROR, MSGMEM, RDPOTA* |
! ¥ ¥ e
| STATEMENT | LABEL | Nomne |
| NUMBER | | |
1 1 | J
r T T 1
| SF | ASF | PASSON, CEM, RPTRB |
| [] d
r T T h)
| RETURN | RETURN | CKENDO, MSGMEM, SKIP |
L 1 4 4
r - T T T T - = 1
I STOP | STOP | CKENDO, SKIP |
1L 1 —— — J
r T T i
| PAUSE i PAUSE | CKENDO, SKIP, RDPOTA* |
b , $ } - i
| INVALID [INVOP | None [
— 1 — e - 1 e mm e 1
| ERROR i ERWNEM I |
prmm + { None |
| WARNING | ERWNEM | i
b= 1 fommmm e 1
i END MARK | MSG | None |
L i N 4
L T T 1
| IF | PASSON | |
b-—- 4 | |
| ARITH i PASSON | |
b + ! |
| CALL | PASSON | CEM I
e 4 1 |
| GO TO | PASSON | |
F $ + i
i COMP GO TO | CGOTO | CKENDO, RDPOTA, MSG, MSGMEM |
t 1 4 v
v]
| * Replacement of dictionary pointers |
L ——— J
Section 3: Charts and Routine Directories 57

Table 10. Phase 14 FORMAT Statement Processing

r = hl
| Processing the Various FORMAT Codes |
L J
r - v 1
| FORMAT Code | Main Subroutine Used |
S $-= 1
| blank] BLANKZ |
b - 1
i D [FMDCON |
[N i I 4
v T R
I E | FMECON |
L] P d
r Tt 4
| F | FMFCON I
e -—4 --- 1
I i FMTINT {
4 4
A I FMACON |
. + — 1
X i FMXCON |
F e - 1
| P i FSCALE |
L i S, 4
v T 1
| + [FMPLUS i
b e {
i - [FMINUS |
— } 1
| (i LPAREN |
1 ——— 4 ——— 4
r T 1
| / I FSLASH I
: SR SRS - 4
i T i FSUBST |
L do —— d
v T 1
[H | FHOLER |
prmm e e e 1
| ' [FQUOTE |
L - [4
v T a
| ’ | FCOMMA |
L] J
v T h)
|) | RPAREN |
L 4]
Table 11. Phase 14 Main Routine/Subroutine Directory
v - T e =
|RoutinesSukrout ine| Function
L ——de —_—
!
| ASF |Processes the SF definition text.
|
| BLANKZ |Processes any blanks encountered while scanning a FORMAT statement.
I I
| BSPREF | Processes BACKSPACE, REWIND, and ENDFILE statement text.

|
| CEM/RDPOTA/RPTRB |Completes text processing for arithmetic, BACKSPACE, REWIND, END-
| |FILE, GO TO, DO, CALL, IF, PAUSE, and SF definition statements.

h)
|
‘]I
t
|
I
|
|
|
I
|
| !
|
[
|
I
|
|
[
I
I
|
I
|
J

| CGOTO |Processes text for computed GO TO statements.
|
| CKENDO |Determines if a statement has invalidly ended@ a DO loop.
| !
| DO |IPerforms diagnostic checks on the DO variakle and the DO parameter.
[I
| END |Processes END text.
| |
| ERRCR |Generates intermediate text entries for error conditions detected in
| |Phase 14.
|
| ERWNEM |Processes error and warning text.
L 4

(Continued)

58

Table 11. Phase 14 Main Routine/Subroutine Directcry (Continued)
[Routine/SubroutineI Function j
{FCOMMA TProcesses any commas found in a FORMAT statement. }
=FHOIER =Processes the H specification in a FORMAT statement. ‘
=FMACON lProcesses the A specification in a FORMAT statement. =
=FMDCON =Processes the D specification in a FORMAT statement. :
FMECON |Processes the E specification in a FORMAT statement. :
FMFCON |Prccesses the F specification in a FORMAT statement. |
‘FMINUS |Processes the '-' specification in a FORMAT statement. :
IFMPIUS }Processes the '+' specification in a FORMAT statement. I
| FNTINT {Processes the T specification in a FORMAT statement. {
IFMXCON =Processes the X specification in a FORMAT statement. !
}FORMAT |Performs and directs some FORMAT processing. May use INTCON. ,
FQUOTE }Processes the apostrophe specification in a FORMAT statement. }
| FSCALE {Processes the P specification in a FORMAT statement. =
{FSLASH =Processes the slash format specification in a FORMAT statement.
FSUBST {Processes the T specification in a FORMAT statement. }
GETWDA |Scans FORMAT statements. I
=INTCON |Converts integer constants to kinary and checks their validity. |
=INVOP jProcesses invalid adjective codes. =
=LABEL |Processes statement number definition text. }
!LPAREN |Processes left parentheses. :
{MSG/MSGMEM |Inserts error/warning messages into text and detects end of stmt.
=PASSON IProcesses CALL, IF, and arithmetic IF statement text. l
=PAUSE |Processes PAUSE statement text. ‘
{PHINT }Performs phase initialization. I
{PRESCN |Performs phase initialization and controls processing of int. text.{
lREAD/READWR }Processes READ/WRITE text. :
=RETURN ‘Processes RETURN statement text. {
=RPAREN |Processes any right parenthesis occurring in a FORMAT statement. I
{SKIP =Processes CONTINUE statement text. :
=STOP :Processes STOP statement text. {
}SUBFUN | Processes SUBROUTINE and FUNCTION text entries. I|
iUNITCK lchecks validity of symbols used to reference a DSRN. j
Section 3: Charts and Routine Directories 59

Chart 09.

*
*
*
*<
*

XRRRADXERIRE X
*

* PROCESS
STATEMENT

*

*
*
*
*
W NN W RN ERR RN

60

Phase

15 (IEJFPAAO) Overall logic Diagram

NN TN NN
* SEE TABLE 14 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 15 ROUTINE/
SUBROUTINE.

*
PHASE 14 OR ¥

INTERLUDE 14 *
LR R s R T L

*
*

L2 22

* *
* B3 *—>
* *
E2 223

v
W[T NN NN NE
* PRESCN *
W o W o B P W W
OBTAIN STATE- *
*MENT AND DETER—-#
*MINE STMT TYPE *

AL R I 22 23

|
v
*

HEARCSHNH AR R RX
* *
* INTERLUDE 15 *
* *

EA 22 2 2 R Sk 2 E s L]

DS *o
o* SPACE #*.

ok
Cc3 *q U366 I X C 4 W% ¥ %X X KK
o* *e * MOPUP *
o END Rt X T P P T B P
o STATEMENT o% > PERFORMS —_—
. . *FINAL PHASE 15 *
. o * PROCESSING *
g ¥ 22222222222 2 2 X2
* NO
v
o*
D3 * o EEZZ 2 TS T2 2 2 2 L X 8 2
o* * * FOSCAN** *
NO % CAN W Y W W W N — NN N
* o STMT CONTAIN >%* CONTROLS THE *
*o ARITH o% * REDRDER AND *
EXPR o *MOD OF INT TXT *
*y oF R 22222 22 X222 X2

XXNEKET RN XRERR
MSGNEM/MSGMEM/MSG *

D S s B I
>* PROC REM OF *<

*STMT AND FORMS *

*E/W TXT IF NEC *
LR 222 S22t 22 22 T 2]

v
L2 2 2]

LE R
* %k ok

*

* SEE TABLE 12 FOR A LIST
OF THE NONARITHMETIC
STATEMENTS PROCESSED BY
PHASE 15 AND THE MAIN
ROUTINES AND SUBROUTINES
THAT PROCESS THESE STATEMENTS.

#% FOSCAN PROCESSES ARITHMETIC,
ARITHMETIC IFs STATEMENT FUNCTION
AND CALL STATEMENTS. SEE TABLE 13
FOR A LIST OF THE OPERATORS THAT MAY
APPEAR IN THE ABOVE STATEMENTS AND
THE MAIN ROUTINES AND SUBROUTINES
THAT PROCESS THESE OPERATORS.

«* OR PRFRM
——>%¢ COMPILATION

*e
o*

v
FRRRESHRERE R X
*

*
%* PHASE 20 *
* *

R E R s S LRSS E]

Table 12.

Phase 15 Nonarithmetic Statemént Processing

r - T - T - 1
| Statement Type or Adjective Cd | Main Processing Routine 1 | Main Sukroutines Used |
[——— d -t]
L T T 1
| COMPUTED GO TO | CGOTO | LAB, CEM |
+ $ —— ¥ 1
| Do | Do | 1AB1, CEM I
L 4 - 1 -— __.'
T T T

| END MARK | MsG | None |
b - + - +- 1
| ERROR | ERWNEM | None |
t + } 1
| GoTO | GoTo | IAB, CEM [
L _—— 4 - —-—-]
r T 1
| INVALID | INVOP | ERROR |
pr - $ —1- |
| I/0 LIST | BEGIO | MSGMEM [
t 1 ———— 1 J
r + + {
| STATEMENT NUMBER | LABEL | ERROR |
t -4 - i~ -
| WARNING | ERWNEM | None [
L 4 4]
r + + {
| READ/WRITE | po2 | CEM |
- + + |
| RETURN/CONTINUE | SKIP | None |
L — L L _,‘
b

|* Routine MSGNEM/MSGMEM/MSG is entered from all these routines except ERWNEM and LABEL. |
| These two routines return control directly to PRESCN. |
L J

Section 3:

Charts and Routine Directories 61

Table 13.

Phase 15 Arithmetic Operator Processing

r T T - 1
| | Main Processing | |
| Orerator { Routine | Main Subroutines Used |
N 4 4 4
r T T |
| ADD | ADD | FREER, SAVER¥, SYMBOL, MODE, MVSBXX, FINDR,

| | | LOADR1 |
b - + ¢ , {
| ARGUMENT | COMMA | CKARG, ERROR, WARN, SAVER#, INLIN2, INARG, |
| i | MSGMEM |
[——— 1 4
3 T T 1
| CALL FORCING | CALL | MSG [
L] [l

r I T == - —{
| | | SYMBOL, MODE, LOADR1, CHCKGR*, SAVER*, FREER, |
| DIVIDE | MULT | DIV, MVSBXR, MVSBXX i
L 4 4 - d
r T T 1
| EQUAL | EQUALS | ERROR, TYPE, MODE, MVSBRX, WARN, MVSBXR,

| [| ASFDEF |
— -4 t -—- 1
| EXPONENTIATION | EXPON | SYMBOL, MODE, CKARG |
L 1 4 d
r -7 T 1
| FUNCTION(| FUNC | CKARG, INLIN1 |
b - ¥ pommm e - 1
| ILLEGAL | INVOP | ERROR |
1 4 i

L - - T h) - -'|
| LEFT PAREN | LFTPRN | CKARG, ERROR, ARTHIF, WARN, LOADR1

L 4 +

r T T - - ____"
| MULTIPLY | MULT | SYMBOL, MODE, MVSBXX, LOADR1l, CHCKGR*, FREER |
L 4 . 4

r T T - - "'{
| RIGHT PAREN | RTPRN | ERROR |
b [l 4
T T —_+ e 1
| SUBTRACT | ADD | SYMBOL, MODE, MVSBXX, FINDR, LOADR1l, FREER, |
| | | SAVER#* |
e —1 4 -- —

| UNARY MINUS | UMINUS | TYPE, FINDR, LOADR1l, MVSBRX, INVOP

L 4 1

r . T .= T -

| UNARY PLUS | UPLUS | INvVOP |
poee T e - 1
| * specific secticns of the SAVER and CHCKGR routines operate upon specific registers |
| (general registers 0, 1, 2, 3; floating point registers 0, 2, 4, 6). |
L —-— J

62

Table 14.

Phase 15 Main Routine/Subroutine Directory

iRoutine/Subroutine? Function]

{ADD iDetermines register assignment for add, subtract, multiply, and]

| |divide operators. |

}ARTHIF ,Processes the statement numbers of an arithmetic IF statement. |

ASFDEF IProcesses statement function definitionms. }

,BEGIO }Processes the I/0 list of READ and WRITE statements. :

ICALI. {Prccesses CALL statements. }

| CEM |Checks for an end mark. i

=CHCKGR |Oktains a specific general register for assignment. :

CKARG lchecks the argument in an external call for validity, and ensures{

| | that the argument has a storage location. |

COMMA }Processes the argument lists. :

=CGOTO :Processes the statement numbers in a computed GO TO statement. I

:DIV ‘Processes integer operands of a divide operation. 1

=DO {Processes DO statements. :

=DO2 {Writes out a text word if not an end mark. :

END lDetermines if the arithmetic IF, arithmetic, and SF statements were}
| processed. |

| EQUALS :Processes equal adjective code text. }

=ERROR =Processes error conditions detected in the rhase. :

ERWNEM Processes end mark, error, and warning text. l

EXPCN Processes exponentiation text.

FINDR Finds a register and indicates that it is a register.

FOSCAN Checks the syntax of arithmetic, arithmetic IF, CALL, and SF
statemernts, and orders the arithmetic expression text according to a
hierarchy of operators. Uses END.

FREER Indicates a register is availatle. |

:FUNC =Processes one-argument functions. |

:GOTO ‘Processes statement numbers referenced by a GO TO statement. |

:INARG :Processes the argument of an in-line function. :

lINLINl =Processes one-argument, in-line functions. I

!INLIN2 }Processes two-argument, in-line functions. %

=INVOP =Processes invalid adjective codes. =

=LAB |Checks for illegal statement numker references. }

iLABl ichecks whether label is defined. i

(Continued)

Section 3: Charts and Routine Directories

63

Table 14. Phase 15 Main Routine/Subroutine Directory (Continued)

|Processes warning conditions detected in the phase.
L

iRoutine/Subroutinei Functi;; ————— -}
{LABEL }Checks statement numbers ;;;g toc indicate the end of a DO loop. --1
}LFTPRN =Process the text for a left parenthesis. =
HLOADRl iEnters an operand into a specific register. {
lMODE |{Checks the mode of operands and changes them if necessary. =
{MOPUP | Performs final phase processing for Phase 15. :
‘MSGNEM/MSGMEM/MSG | Processes the remaining text words of a statement and puts out any%
| |necessary error, warning, and end do text. |
}MULT |Aids in processing the operands of multiply and divide instructions.}
‘MVSBXR/MVSBRX =Processes a left operand subscripted variable. 1
=MVSBXX |Processes a 1left operand sukscripted variable if the right operand!
| |might also be a subscripted variable. |
‘PRESCN |Determines what statement type is represented in the text and which{
| |major routine will process it. |
IRTPRN ‘Processes illegal use of right parenthesis as a delimiter.

}SAVER ‘Stores the contents of a specified register into the next availablel
| |work area space. |
}SKIP | Processes RETURN and CONTINUE statements. }
ISYMBOL |Checks the left and right operands of an operator. =
ITYPE ‘Checks each symbol used as an crerand. {
EUMINUS ‘Processes unary minus operaticns. :
{UPLUS |Processes unary plus operations. }
l WARN ! J{

L——

64

Chart 10.

R 2RI R NN
* *
* PROCESS *
STATEMENT *<

*

*

*
*
*
*
3NN WX

v
LI 2 2]

¥* X *

Phase

*%

20 (IEJFRAAO0) Overall Logic Diagram

EE 2 Al R LS 222 L2
* *
* PHASE 15 OR _ *
INTERLUDE 15 *

t22 22222222 X X2 X3

SEE TABLE 17 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 20 ROUTINE/
SUBROUTINE.

v
i*i*laB****i*i&** W B 4NN

INIT * PHEND *
—i—i——*—*-*—*-* L e .)
* PHASE * —>*PERFORMS FINAL *
* INITILIZATION % #* PHASE 20 PRO- #*
* * * CESSING * X NN
NI NN IR e I I * *
* C5 *
XHER * *
* * W
* C3 *#—>
* *
AN v
v o¥a |
9 C 3NN R Cc4 * 4 v
* STATA * o® ANY ¥, HXRRCSHNEE RN TN KR
I I . . o* SOURCE *. NO * *
OBTAIN STMT AND# *q MODULE o ¥—————D % PHASE 25 *
*DETERMINE STMT * * o ERRORS ¥ * *
* TYPE o* EE T T
***************** “k. ox
* YES
v v
ok ¥,
03 %, D4 *.
o * * g o* 1s *q KD S NN R N
¥ END *eo YES o ¥ *LOAD® *4 NO *
*o STATEMENT - t— *o OPTION D i PHASE 30 *
*o o® * e SPECIFIED.* * *
*e o ¥ *, ¥ R R T]
He oF *e oF
* NO * YES
XRXW
l_ * *
>* C5 *
*
v X
o¥,
E3 *o AERERELERRARERERR
o ¥ *, * *
NO % CAN *o YES * *% PROCESS *
—* ¢ STMT CONTAIN ¥—>% STATEMENT *
e SUBSCRIPT * *
*.EXPR o% * *
xe oF PEETTITE TR TR
’ |
\
ERER
* *
* C3 *
* *
ERRR

SEE TABLE 15 FOR A LIST OF-

THE STATEMENTS PROCESSED BY

THAT DQ NOT CONTAIN SUBSCR!PT EXPRESSIDNS;
AND= 2) THE MAIN ROUTINE AND SUBROUTINES
THAT PROCESS THESE STATEMENTS.

SEE TABLE 16 FOR A LIST OF=- 1)
THE STATEMENTS PROCESSED BY PHASE
NTAIN SUBSCRIPT EXPRESSIONS-

20 THAT M
AND= 2 AlN ROUTINES AND
ROUTIN 5 THAT PROCESS THESE STATEMENTS.

Section 3: Charts and

Routine Directories

65

Table 15. Phase 20 Nonsubscript Optimization Processing

- T T - |
| Statement Type | Main Processing Routine | Main Sukroutines Used |
L] L d
r T == T - q
] DO | Do | BVLSR, RMVEVL |
b + e - -
| FND DO | ENDDO | None |
—— 4 R e 1
| IMPLIED DO | IOLIST | BVLSR, CALSEQ, RMVBVL,SUBVP
prmmee ¥ 1 - 1
| READ | READ | None |
pommmm + -== |
| STATEMENT [| |
| NUMBER i LABEL | None |
L L L d

|
|
]
!
]
|

Table 16. Phase 20 Subscript Optimization Processing

orerands.

* Whenever exponentiation is encountered subroutine ESDRLD processes the exponentiation

r T T 1
| Statement Type | Main Processing Routine | Main Sukroutines Used

L [l —— 1 ———— 4
r + + i
| ARITHMETIC* | ARITH] CALSEQ, CKCOD, RMVBVL, SUBVP |
e } —— ¥ - i
| CALL* | IFCALL | BVLSR, CALSEQ, RMVBVL, SUBVP

b ———t -+ - i
I IF* | IFCALL | None I
b ¥ + 1
I 1/0% | IOLIST | BVLSR, CALSEQ, RMVBVL, SUBVP

b 1 i i
I |
| I
L 1

66

Table 17. Phase 20 Main Routine/Subroutine Directory

iRoutine/SubroutineI Function]
|;;;;§-_—--_) TOptimizes arithmet;;-statement text.)]
lBVLSR {Enters bound variables on the bound variable list. {
lCALSEQ {Processes argument lists. =
=CKCOD }Assigns an area and a constant for use by the IFIX, FLOAT, and}
| | DFLOAT in-line functions. |
=DO | Processes DO statements. }
IDUMPR IProcesses dummy subscripted variables. }
}ENDDO |Ensures that the end of a DO lcor is recognized. =
;ESDRLD }Generates ESD and RILD card images. {
}GENGEN :Begins the generation of literals. :
{IFCALL !Optimizes the arithmetic expression of an arithmetic IF statement or}
| |a CALL statement. |
IINIT lPerforms Phase 20 initialization. :
}IOLIST | Processes DO variables of an implied DO and I/0 lists of READ/WRITE}
| | statements. |
ILABEL |Modifies register assignments due to referenced statement numbers. {
iPHEND | Pexforms final Phase 20 processing. :
{READ }Processes external references within a READ statement. :
=RMVBVL :Removes register assignments from the index mapping table fori
| | sukscript expressions that invclve bound variables. |
{STATA EChecks the statement type represented by the text and determines the%
| | correct Phase 20 processing routine. |
iSUBVP EOptimizes subscript expressions. J

Section 3: Charts and Routine Directories 67

Chart 11. Phase 25 (IEJFVAAQ) Overall Logic Diagram

HRERAZERRERRERE
* SEE TABLE 19 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH PHASE 25 ROUTINE/

*
* PHASE 20 *
* *

E2 2222222222222

v
HRENXD IR RN HR RN

* START *
Hom e Hom B Y W W B
* PHASE *

*INITIALIZATION *
* *

E2 2222222222822 L)

|
|
v

SUBROUTINE .

s,
Cc3 * 4 W C 4 W RN RR R
o ¥* 1s * o * *
«* DOBJECT *. YES % LOAD OBJECT *
LISTING OPTN o >*L_ISTING MODULE *
,SPECIFIED. * 1EJFVCAO) *
* o ¥ * *
e ¥ L2222 222222222 2]

* NO

>|<

v
HEEERDIHRERRRHR AR
* PRESCN *
Hm e RN R KRN
OBTAIN TEXT WRD#
*+ DET ADJ CODE *
* OR STMT TYPE *
HHRHIERHRRHNHHRH NN

I
|

v
o,
E3 *o
¥ *q
END *. YES
STATEMENT o ¥
*o o
*e ¥
Xy ¥
* NO

v
EEREAREI R RRE N
* *
* * PROCESS *
* STATEMENT OR #
#*ADJECTIVE CODE *
* *

L2 222222222 Rt

*# SEE TABLE 18 FOR A LIST
OF THE STATEMENTS AND
ADJECTIVE CODES PROCESSED
BY PHASE 25 AND THE MAIN
ROUTINES AND SUBROUTINES

HHRRRDL R EERRNHHN
* END *
LT T T N S)
——>*PERFORMS FINAL *
* PHASE 25 *
* PROCESSING *
e L]

v
E2 222N S22 s E
*

* DELETE OBJECT

*_ISTING MODULE
* IF IT WAS

* LOADED
R R

v
R S

* ok ok k K K

*
* PHASE 30

3 3 KN X RN

*
*
*

THAT PROCESS THE STATEMENTS

OR ADJECTIVE CODES.

68

Table 18.

Phase 25 Statement and Adjective Code Processing

T TTTTTTTT T T T M T 1
|Statement or Operation |[Main Processing Routine #*#*#x*| Main Sukroutines Used |
L 4
r TTTTTTT T T T - - - - = 1
| AOP | BOP | BASCHK |
po—— + - + -—- -4
|Arith expressions in | RXGEN/LM/STM | BASCHK/RROUT, RXOUT |
|approximate instr. form| | |
t -~ -1 e g i
| SF DEFINITION | ASFDEF# | LISTOUTB |
¢ i R -4
| SF USAGE | ASFUSE | BASCHK/RRCUT, RXOUT |
L
b R e e - -—
| BACKSPACE | RDWRT | BASCHK, ARGOUT, GET, RXOUT
p-=s -- e e 1
| CALL | FUNGEN | BASCHK/RROUT]
L 1 —— e 1 J
T T T i
| COMPUTED GOTO }CGOTO | BASCHK/RROUT, ARGOUT]
F } e B i
DO |po1 | BASCHK, RXOUT |
L —— +__ ______ 4 ——— d
v T A
|END D | ENCDO | BASCHK, RXOUT |
[N e o e o i e e e e e e o e +__ — — e e e e e e .'
v T
|END FILE | RDWRT | BASCHK, ARGOUT, RXOUT, GET |
L —— 1 ——— ———— _,‘
v T
|END I/0 LIST |ENCIO | RXOUT |

N 4
—————— -4 vt - -
| ERROR | IBERR | BASCHK, RROUT |
————— —_— + _ 4 - -

+
| FUNCTION | SUBRUT ** | GENBR, GET, RROUT, RXOUT |
L] 1
r - L T ’l
|FUNCTION CALL | FUNGEN | BASCHR/RROUT, RXOUT
L —— 1 —_— - | I, -]
v T + 4
|co TO | TRGEN | BASCHK/RROUT, RXOUT |
— $=- t -—-- -
| IF |ARITHI | BASCHK/RRCUT |
L 1 4 4
v - T T === 1
| IMPLIED DO |DO1 | BASCHK, RXOUT, LISTOUTB |
L ——i ———— ———— e e - 4
T N 1
|I70 LIST ITEM | IOLIST | ARGOUT, BASCHK/RROUT, RXOUT
L 4 4 4
r - T T - 1
| LABEL | LABEL* %% | LISTOUT1 |
L 1 —_—————eee 1
T T 1
| LOAD MULTIPLE | LM | BASCHK/RROUT, RXOUT |
R 4 1
v T T - _"
| PAUSE | PAUSE | BASCHK/RROUT, RXOUT |
i 4 1
v T - T _—-'{
| READ/WRITE | RDWRT | BASCHK/RROUT, ARGOUT, RXOUT

L
————————————————————— ¥ - -
| RETURN |RETURN | BASCHK/RROUT, RXOUT, LISTOUT1 I
L] —_——— 1 }
r T + 1
| REWIND | RDWRT | BASCHK, ARGOUT, RXOUT I
t + oo + - ~
| sTOP | STOP |None |
- e ¢ e - |
| STORE MULTIPLE | STM | BASCHK/RROUT, RXOUT |
L —_— 4 — 4
1) T 1
| SUBROUTINE | SUBRUT *#* | GENBR, BASCHK/RROUT, RXOUT
[1 ———— | ———— 4
r T T K
| SUBSCRIPT | SAOP | BASCHK/RROUT, RXOUT |
L - 4 }
r - = - 1
| * Makes an entry in the statement function and DO branch list table. |
| ** Makes an entry in the epilog table. |
| *** Makes an entry in the statement number branch list table. |
|**** A1l of the above routines return control to the PRESCN routine to begin the |
| processing of the next text word. |
L — _ —_———— 1

Section 3: Charts and Routine Directories 69

Table 19.

Phase 25 Main Routine/Subroutine Directory

r T~ T T T T T T T T T - -
|Routine/Subroutine | Function |
L] 4
r T - == - Al
| AOP | Processes subscript text when the entire subscript expression need
| |not be calculated.

| |

| ARGOUT | Inserts addresses for arguments into the object module.

I |

| ARITHI |Processes arithmetic IF statements.

I |

| ASFDEF |Processes the first text word of a statement function definition.
|

| ASFUSE |Generates instructions to use a statement function at object time.

|
| BASCHK/RROUT, RXOUT

}CGOTO

IDOl

=END

:ENDDO

}ENDIO
EFUNGEN/IBERR
IGENBR

=GET

=IOLIST
=LABEL
‘LISTOUTB/LISTOUTl

|
| PRESCN
|

|

| RDWRT
|

| RETURN

|
| RXKGEN/LM/STM
SAOP

START
STOP/PAUSE
SUBRUT
T

|
I
I
|
|
[
I
I
|
I
|
| TRGEN
L

| Generates RX and RR format instructions.

| Processes computed GO TO statement text.

|Begins processing of the DO statement text.

| Performs the final Phase 25 processing.

|Generates instructions to end a DO loog.

| Processes the end I/0 text.

| Processes in-line and library function calls.

|[Makes entries to the branch list tables.

|Obtains intermediate text words.

|Processes the I/0 list substatement text.

|Processes statement number definition text entries.

| Generates branch list text.

| Determines which routine will process a

| intermediate text.

| Processes READ, WRITE,

| Processes RETURN statement text.

| Processes intermediate text entries with adjective
|25 and 8F (hexadecimal).

| Processes subscript text when the entire subscript ordering factor
|must be calculated.

| Performs phase initialization.

|Generates instructions for the STOP and PAUSE statement text.

|Processes FUNCTION and SUBROUTINE header card text.

| Generates branching instructions for GO TO statements.
L

particular portion of

BACKSPACE, REWIND, and ENDFILE statements.

codes between

€ e e e e e — o — T — . — . S i S S ——— — —— — —— — — ——" SPOY . S e e, et i — — — — i i i e e St . S S, . st . e St B i

70

Chart 12. Phase 30 (IEJFXAAO) Overall logic Diagram

DESCRIPTION OF THE FUNCTION

HRAEAD R REEKEER SEE TABLE 20 FOR A BRIEF
* *

* PHASE 20 OR * OF EACH PHASE 30 ROUTINE/
* PHASE 25 » SUBROUTINE.

I IR NN

v
o,
B2 *o

¥ *q
NO .*ANY ERRORS #*,
[——’o OR WARNINGS %
*

. .
*e o *# OF BR LISTS *
v %o o LT Y T e
L2212 * YES
* *
* G2 *
* *
L2220
v A\
i*#**cz********** *****CA******'***
*THIRTY *GENTAB
--*-*—*—*-*_*-*<—_> INCTXT f R *—*—*—i-i-*
* PRIME * TXTIN *BUILDS AND IN- *
* TEXT * #* TERNAL TABLE #
* BUFFERS * FOR BR LISTS *
il{**********{*** LA S22 22 22222222
>
v v
l*iiiDz********** L2 2T LPE TS T TN
* ERR/WARN #*CHKLBL * NXTOUT
-—*-*—*—*-*****(——> PRINT FoRe RN R—R—H—H——D> ENDTXTK >TXTOUT
* SET uP *GENERATE TXT + * ANYRLD
* MESSAGE * *RLD CARD IMAGES*
* * * FOR BR TABLES *
RN NN RN RRNR L2 T T e E e
v
oy v
E2 *, **l*iEA*il{**i*il
- *o *ZRTXT
NO % LAST *q *—l—*—*—*yi—*—*-*<~—> TXTOUT
* o MESSAGE - * GENERATE TXT *
* g ¥ #CARD IMAGES FOR#*
*q T *BASE VALUE T8L *
e o L ST i It R T
* YES
v
22T TR TR Y T
#BASRLD *
R RN KK — K= R—NmA——> TXTOUT
* GENERATE RLD *
*CARD IMAGES FOR#¥
*BASE VALUE TBL *
L I R e T 2]
XXNR
* *
* G2 #—>
* *
E2 e v
oo \
G2 *o HERERGLARRREXNRRR
o *q * ENDCRD # *
«* DETERMINE *, PHASE 25 HoWmFm R h KN — W= %—D> TXTOUT
*o ENTRANCE o ¥ * GENERATE END * PRINT
*o o *CARD IMAGE FOR %
e ¥ # OBJECT MODULE %
*o o¥ L I S s S e
#PHASE 20 |
* SUBROUTINE ENDCR
ALSO SETS UP THE
< *S1ZE OF COMMON

—————

v
NI D 4NN
* TWNFIV *
Hom e o e W e e e
PRIMES TEXT BFR#¥
* COMPUTES SIZE *

v
IR N D WK N
*

*
* PHASE 1 *
» *
L2 22 22 222 2 2]

AND THE SIZE OF
O0BJECT MODULE?®
MESSAGE.

Section 3: Charts and Routine Directories

71

Table 20.

Phase 30 Main Routine/Subroutine Directory

igg;g;ge/SubroutineT T Function 1
{ANYRLD —-_Taenerates RLD card images-E;; kranch lis;—;ables.]
{BASRLD IGenerates RLD card images for base value table. :
}CHKIBL | controls generation of TXT and RLD card images for branch lists. |
}ENDCRD {Generates END card image for object module. }
}ENDTXT =Switches input/output buffers. }
:EOJ }Sets up 'SIZE OF COMMON' and 'SIZE OF PROGRAM' message. ‘
}ERR/WARN }Sets up error and warning messages. {
}GENTAB |Builds an internal table for branch list tables. {
}INCTXT =Increments intermediate text pointer. :
‘NXTCUT =Generates TXT card images for kranch list takles. =
}PRINT |Interfaces with control program to print messages. =
!THIRTY 1Primes input text buffers. }
%TWNFIV :Primes input text buffers. }
ITXTIN }Reads intermediate text. l
}TXTOUT =Outputs card images on SYSLIN and/or SYSPUNCH data sets. ‘
| ZRTXT %Generates TXT card images for kase value takle. i

L

1

72

The manipulation of the data control
blocks for the data sets required Ly the
compiler depends on whether a SPACE or a
PRFRM compilation is being performed. For
SPACE compilations, there 1is more data
control block manipulation because of main
storage limitatioms. (The main storage
required to contain all the BSAM routines
and the control blocks for I/O operations
may not be available or may be restricted
from the compiler by the value specified in
the SIZE option.) For PRFRM compilations,
the availability of main storage is not a
limitation. Therefore, less data control
block manipulation is required.

FOR SPACE COMPILATIONS

For a SPACE compilation, Phase 1 ini-
tially opens only the data control blocks
for the data sets used by Phases 7, 10D,
and 10E (SYSIN, SYSUT1, SYSUT2, SYSPRINT).
For the remainder of the compilation, the
data control blocks are opened by the
interludes only when their corresponding
data sets are to be used by a specific
compiler component. Each interlude first
closes all the data control blocks and then
opens only those that are to be used. This
process decreases the size of the resident
BSAM routines and provides the compiler
with the additional main storage necessary
for compilation.

Figure 12 illustrates the manipulation
of data control Lklocks for SPACE compila-
tions. OPEN indicates that the data con-
trol block is opened during the execution
of a compiler component. CLOSE indicates
that the data control block is closed
during execution of a compiler component.
TCLOSE indicates that the corresponding
data set is repositioned from the end of
the data set to the beginning of the data
set for subsequent reading or writing. 1IN,
OUT, INOUT, and OUTIN indicate that the
corresponding data set is used for initial
or intermediate compriler input, for inter-
mediate or final compiler output, for input
followed by output, and for output followed
by input. READ indicates that the corres-
ponding data set is read from during execu-

Appendix A:

APPENDIX A: DATA CONTROL_ BLOCK MANIPULATION

tion of a compiler comgonent. WRITE indi-
cates that the corresponding data set is
written onto during execution of a compiler
comgponent.

For a batch compilation (i.e., more than
one source module), the SYSPRINT, SYSLIN,
and SYSPUNCH data sets are manirulated so
that each data set contains the output for
the entire ccmpilation (i.e., for all the
source modules). However, if the SYSOUT
parameter is wused on the DD statements
associated with SYSPRINT, SYSLIN, and SYS-

PUNCH; a new data set is created for the
output of each of the compiled source
modules.

FOR PRFRM COMPILATIONS

For PRFRM compilations, Phase 1 initial-
ly opens the data control klocks for all

the data sets required by the compiler.
Because all the required data control
blocks are opened initially, the compiler

can kypass the execution of Interludes 10E,
14, and 15. Bypassing the execution of the
interludes reduces data control block
manirulation and phase-to-phase transition
time; therefore, compilation time is also
reduced.

Figure 13 illustrates the manipulation
of data control blocks for PRFRM compila-
tions. OPEN indicates that the data con-
trol block is opened during execution of a
compiler component. CLOSE indicates that
the data control block is closed during
execution of a compiler component. TCLOSE
indicates that the corresponding data set
is repositioned from the end of the data
set to the beginning of the data set for
subsequent reading or writing. IN, OuT,

and OUTIN indicate that the corresponding
data set is used for initial compiler
input, for intermediate or final compiler

output, and for output followed by input.
READ indicates that the corresponding data
set is read from during execution of a
comgpiler component. WRITE indicates that
the corresponding data set is writtem onto
during execution of a compiler component.

Data Control Block Manipulation 73

* SYSLIN is used only if the LOAD option is specified.
** SYSPUNCH is used only if the DECK option is specified.

r T T T T T T -
i | DCB for | DCB for | DCB for | DCB for | DCB for | DCB for |
| Compiler Component | SYSIN | SYSUT1 | SYSUT2 | SYSPRINT | SYSLIN * | SYSPUNCH ** |
t t 4 ! $ 1 t {
| Phase 1 (initial | OPEN | OPEN | OPEN | OPEN | | |
| entry) | IN | ouT | our | our i [|
Lo e e e e e e e e e e e ! 1 [l] 1 1 J
v T T T T T T 1
| Phase 7 | READ | | | WRITE | | |
pmm—m ¥ ¥ T 1 ¥ i
| Phase 10D | READ | WRITE | WRITE | WRITE | i |
I | I | | | | !
L —————at ! +___ 1 1 1 1
v T -T T T T 1
| Phase 10E | READ | WRITE | | WRITE | | i
I | | | [| | I
L - [l L 1 pu— 4 ———— 4 4
r Ll T T T T T 1
[| CLOSE | CLOSE | CLOSE | CLOSE | | |
| Interlude 10F | | OPEN | OPEN | OPEN | OPEN | OPEN [
i | | IN | INOUT | OUT | our | ouT [
L P] [4 —d] 1 4
r T T T T T T A
I I I | READ | | | |
| Phase 12 | | | TCLOSE | WRITE | WRITE | WRITE |
L } 1 - ——— - 4
b + - ¥ 1 ' } i
{ Phase 14 | I READ | WRITE | | WRITE | WRITE |
| | | | | | | I
b e e e e e e o o e e e e e 1 d 4 P 1 N 4
v T T T T T T b
| | | CLOSE | CLOSE | CLOSE | CLOSE | CLOSE |
| Interlude 14 | | OPEN | OPEN | | i I
| | | ouT | IN | | | I
L 4 L | I 1 4 4 _{
r T T T T T T
| Phase 15 I | WRITE | READ | [[|
| | | ! I | | |
F ¥ + e e 1
| | | CLOSE | CLOSE | | | |
| Interlude 15 | | OPEN | OPEN | OPEN | OPEN | OPEN |
I | | INOUT | OUTIN | OUT | our | ouT i
L 1] ———1 ————— 4 1 ’)
r T T T T T T h)
| | | READ | WRITE | | | |
| Phase 20 | | TCLOSE | TCLOSE | WRITE | WRITE | WRITE
b ¢ t t -+ 4 4 4
| [| WRITE | READ | | [|
| Phase 25 | | TCLOSE | TCLOSE | WRITE | WRITE | WRITE |
b : 1 $ommomommt + + -
| i | READ | READ | | | |
| Phase 30 I | TCLOSE | TCLOSE | WRITE | WRITE | WRITE |
—— oot ¢ $ ¢ $ {
| Phase 1 (subsequent] | CLOSE | CILOSE | CLOSE | CLOSE | CLOSE |
| entries) | OPEN | OPEN | OPEN | OPEN | |
i | IN | ouT | our | our | | |
pomm oo ¢ : + 4 ¢ 1 !
| Phase 1 (final | | | | | | |
| entry) | CLOSE | CLOSE | CLOSE | CLOSE | CLOSE | CLOSE |
i 4 L PO L L 4 4
r i 1
| I
! I
4

Figure 12.

T4

Data Control Block Manipulation

for SPACE Compilations

r T 1 T T T T 1
| | CCB for | DCB for | DCB for | DCB for | DCB for | DCB for |
| Compiler Component | SYSIN | SYSUT1L | SYSUT2 | SYSPRINT | SYSLIN % | SYSPUNCH ** |
b $ ¥ + + ¥ -+ 1
| Phase 1 (initial | OPEN | OPEN | OPEN | OPEN | OPEN | OPEN |
| entry) | IN | OUTIN | OUTIN | OUT | ouT | our i
b $: $ { t + 4
| Phase 7 | READ | | | WRITE | | |
t 1] 4 ——t 1 i I 4
1) T T T T T T 1
| Phase 10D | READ | WRITE | WRITE | WRITE | | I
e ¥ ¥ 4 1 -4 ¥ 1
| | | WRITE | | I I |
| Phase 10E { READ | TCLOSE | TCLOSE | WRITE | | |
L 1 L] 4 4
| S T -7 +"" T T ToTTT T T T {
| Interlude 10E | | | | | | |
| (nct executed) | i | | | | |
pmmmmm e 4 + ¥ 1 3 + 1
| | | | READ | | I I
| Phase 12 | I | TCLOSE | WRITE | WRITE | WRITE i
t ¥ 1 frmmmmmmmq 4 ¥ 4
| | | READ | WRITE | | | |
| Phase 14 | | TCLOSE | TCLOSE | | WRITE | WRITE |
Tnterivae 10| I i i i
nterlude
| (not executed) | | | | | | |
b 3 $ $ ¥ 4 ——t- i
| I | WRITE | READ | | | |
| Phase 15 | | TCLOSE | TCLOSE | [| |
| Tnteriode 15 i i [T i Jl
Interlude

| (not executed) | | | | i | |
— ¢ ¥ ¥ 1 } —4- 1
| | | READ | WRITE | | | I
| Phase 20 | | TCLOSE | TCLOSE | WRITE | WRITE | WRITE I
b-- -t t t - -+ ¥ 4
| [| WRITE | READ | | | |
| Phase 25 I | TCLOSE | TCLOSE | WRITE | WRITE | WRITE |
t — ¥ + 4 $-— ¥ ¥ i
| | | READ | READ | | | |
| Phase 30 | | TCLOSE | TCLOSE | WRITE | WRITE | WRITE I
¢ } 1 o : + 1
Phase 1 (restart	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE
condition)	OPEN	OPEN	OPEN	OPEN		
	IN	ouT	outr	our		
t t ¥ ¥ 1 — ¢ 1						
Phase 1 (previous						
compilation -						
PRFRM)]					I	
L R 1 +___ p—	L 4					
) T T T T 1						
Phase 1	CLOSE	CLOSE	CLOSE	CLOSE CLOSE	CLOSE	
! (final entry) l l 1 l l J						
r - 1						
* SYSLIN is used only if the LOAD option is specified.						
#* SYSPUNCH is used only if the DECK option is specified.						
L -_ _—
Figure 13. Data Contrcol Block Manipulation for PRFRM Compilations

Appendix A: Data Control Block Manipulation 75

APPENDIX B: TABIES USED BY PHASE

LOAD MODULES

During a compilaticn, the ccmpiler uses
the following takles:

Allocation table.
Routine displacement tables.
EQUIVALENCE takle.
Forcing value takle.
Cperations table.
Subscript table.

Index mapping table.
Epilog table.

Message length table.
Message address takle.
Message text table.

of the
created
is used

Some tables are actual segments
phase load modules; others are
during the compilation. Each table
only by the phase that contains it (as a
part of the phase load module) or creates
it. The following discussions describe the
use and format of each table.

ALLOCATIGCN TABLE

The allocation_tabkle is a part of the
Phase 7 1load module. It is used to allo-
cate the amount of main storage oktained

among buffer areas and resident tables. An

ROUTINE DISPLACEMENT TABLES

The routine disrlacement tables for re-

served word rprocessing routines are parts
of the Phase 10D and Phase 10E 1load
modules. Reserved words are those that

indicate a specific FORTRAN statement. The
Phase 10D and Phase 10E routine displace-
ment tables are identical in structure and
in purpose (locating the processing routine
for a given reserved word). The Phase 10D
takle aids in the location of reserved word

routines for declarative statements; the
Phase 10E takle aids in the location of
reserved word routines for executable
statenments.

Each reserved word causes an entry to be
made in the dictionary by Phase 7 (refer to
Appendix C). The address field of these
entries contains a displacement, used as an
indexing value, relative to the start of
the arpropriate rcutine displacement table.
This index is used to obtain the actual
displacement, relative to a base register,
of a specific reserved word routine located

within the Phase 10D or Phase 10E 1load
module. The effective address of the
desired reserved word routine is obtained,

by Phase 10D or Phase 10E, by adding this
displacement to the value in the base
register.

entry in the allocation table has the form Figures 15 and 16 illustrate the format
shown in Figure 14. of the routine displacement tables.

r - T T T 1
		Storage Used for	Storage Used for
	Available Storage	Dictionary and	the four
Design Point	Over 15360	Overflow Table	Internal Text Buffers
— - ¥ - 1			
200K	189440	65536	4x(3624)
108K	95232	65536	4x(3624)
44K	29696	20326 i 4x(3000)	

| 15K | 0 | 2216 | 4x(104) |
lL 4L 4 ———— L _:
|The design point may be 15, 44, 108, or 200 K (K = 1024 bytes). The remaining fields|

|indicate amounts of storage in bytes.
lat a
|among buffer areas and resident tables.
i

If the amount of main storage available is
design point, simple interpolation is performed to divide storage appropriately|

not |

Jd

Figure 14. Allocation Table Entry Format

76

r
|Displacement from base register value of]
| REAL reserved word routine |
L

s
|Disrlacement from kase register value of
| COMMON reserved word routine

[N

.
|Displacement from base register value of
| FORMAT reserved word routine

L

b
|Displacement from base register value of
|DOUBLE reserved word routine

L

b
|Displacement from base register value of
| INTGER reserved word routine

|
|
4
¥
I
|
d
1
|
I
4
a
!
|

-

|Displacement from base register value of}
|EXTERN reserved word routine
L

8 _—
|Displacement from base register value of
| FUNCT reserved word routine

L

|Disrlacement from base register value of|
|DO reserved word routine |

|Displacement from base register value of
|GO reserved word routine

|Displacement from base register value of
| FORMAT reserved word routine

b—- -

|Displacement from base register value of
| IF reserved word routine

[— -

|Disrlacement from base register value of
|END reserved word routine

|Displacement from base register value of
| CALL reserved word routine

|Displacement from base register value of
| GOTO reserved word routine
L

8
|Displacement from base register value of
|DIM reserved word routine

L

s
|pisplacement from base register value of
| SUBRUT reserved word routine

I

r

|Displacement from base register value of
|EQUIV reserved word routine

L

DU TE R S T W—

2 bytes

Phase 10D Routine Displacement
Table Format

Figure 15.

The following example illustrates how
the GO reserved word routine is located.

- 1

et | Dictionary entry for GO]

| L- 4

|

| Phase 10E Routine Displacement

| Table

| - — .

| | Displacement for DO

| reserved word routine !

| - 1

[s Displacement for GO |

r——— reserved word routine |

I -~ -4

| | - |

| | . I

| | . . |

| k 1

| | Displacement for BKSP

| | reserved word routine

l L J

|

|

| ~ -

| | GO reserved word

L processing routine |
L J

Appendix B:

s
|Displacement from base register value of
|READ reserved word routine
|Disglacement from base register value of
| STOP reserved word routine

{Disrlacement from base register value of
| PAUSE reserved word routine

- _—

|Displacement from base register value of
|WRITE reserved word routine

|Displacement from base register value of
| RETURN reserved word routine

|Displacement from base register value of
| REWIND reserved word routine

|

} —

{Displacement from base register value of
|ENDFIL reserved word routine
|Displacement from base register value of
| CONT reserved word routine

L

.
|Displacement from base register value of
| BKSP reserved word routine

L

2 bytes

Figure 16. Phase 10E Routine Displacement

Table Format

EQUIVALENCE TABLE

The EQUIVALENCE table is constructed by
Phase 12 for wuse by the Phase 12 storage
allocation routines, which assign addresses
to equated variakles. This table is a
serial 1list in which each rwemker follows
the preceding one.

Tables Used by Phase Load Modules 77

The format of a typical entry in the

r T T b B]
EQUIVALENCE table is shown in Figure 17. |Adjective|Left |Address of| Right |
| Code |Forcing|Associated| Forcing |
| |Value |Routine | Value |
- - —— 1 4 4 4
r T - T 1 I‘ T T T 1
|p(variable) |p(root) |displacement |[size | | (| 64 |a (LFTPRN) | 01
|oxr p(array) | |or address in | | 3 + —-——d B e 4
| | | COMMON | | |) | 00 |a(RTPRN) | 69 |
. L L L ook == ¥ i
2 bytes 2 bytes 2 bytes 2 bytes | = | 70 {a (EQUALS) | 70 |
¢ 4 - ¥ 1
Figure 17. EQUIVALENCE Table Entry Format | p | 49 {a(coMMA) | 48
pommmm—t + ¥ |
| n | 80 |rever | 01 |
Each field in an entry is two bytes in | | |forced out] |
length. The first field contains a pointer t—- + +-- ———i- i
to the entry for the variable or array in | + | 09 |a (ACD) | 09 |
the dictionary. The second field contains p——- + +———- + -
a pointer to the dictionary entry fcr the | - | 09 |a (ACD) | 09 |
root to which the variable or array is - $-- + + 4
equated. (If the variable or array is the | * | 05 | a (MULT) | 05 |
root of the EQUIVALENCE group, the first p———————e R + + 4
two fields contain the same pointer.) The | / | 05 |a (MULT) | 05 |
third field contains the displacement or t—-- + + 4 -—
address assigned to the variable or array | *% | ou |a(EXPON) | 03 |
in COMMCN. (The addresses for variakles F=—-- + + + 4
and arrays are assigned before this table | F(| o4 | a (FUNC) | 01 |
is constructed.) The fourth field is the b-- $——- + + 4
size, in bytes, of the EQUIVALENCE group or |unary - | 05 |a (UMINUS) | 01 |
class. +—- + + -
|end mark | 00 | never | 80 |
The maximum number of entries in the | | |forced out| |
EQUIVALENCE table is the larger of: b—- - -4 + 4
|unary + | 05 |a(uPLUS) | 01 |
e 100, ox e fem——— + + i
SF | |
s The largest unused segment of the dic- Fercing 72 |a (END) 70 |
tionary and overflow table divided by -_— 1 ————t } .|
eight (if this segment exceeds 800 | ARITH
bytes). Forcing 72 a (END) 70
For example, if the compiler allocates CALL
5500 bytes to the dictionary and the over- Forxcing 72 a(CALL) 70
flow table, and 3100 bytes are used, then -
the maximum number of entries in the EQUI- IF
VALENCE table is: Forcing 72 a(END) 70
Lem
(5500 - 3100)/8 = 2400/8 = 300 1 byte 1 byte 2 kytes 1 byte
Figure 18. Forcing Value Table
FORCING VALUE TABLE
OPERATIONS TABLE
The forcing value table is not created
or altered in any way by the compiler; it The operations table is a temporary

is loaded into main storage as a part of
the Phase 15 1load module. The forcing
value table is used by Phase 15 as an aid
in the reordering of intermediate text
entries in arithmetic expressions. This
table defines the relative position of each
operator in the hierarchy of operators.

Each entry in the forcing value table is

five bytes in 1length. The forcing value
table is illustrated in Figure 18. '

78

storage area (part of the Phase 15 load
module) used during the reordering of oper-
ations within statements that can contain
arithmetic expressions. This table func-
tions as a "pushdown table"™ (that is, a
table in which the top entry is the most
recently entered item) for storing inter-
mediate text words that refer to the opera-
tion in question. An exception is made for
subscript text, which is stored in the
subscript table.

The operations table can contain no more
than 50 entries. Entries are four bytes in
length and are obtained by a pointer to the
last entry in the takle for the specific
statement under consideration. The format
of a typical entry in the operations table
is shown in Figure 19.

r k) = T 1
|adj code|modestype field|pointer field |
L ——— L L -d

1 byte 1 byte 2 bytes

Figure 19. Operations Table Entry Format

SUBSCRIPT TABLE

The subscript table is a temporary stor-
age area (part of the Phase 15 load module)
used for subscript text encountered during
the reordering of intermediate text words
by Phase 15. This table functions as a
"pushdown table" (that is, a table in which
the top entry is the most recently entered
item) for storing subscript intermediate
text words that refer to the oreration in
question.

The subscript table can contain no more
than 38 entries. Entries are eight bytes
in 1length and are obtained by a pointer to
the top entry in the table for the specific
statement under consideration. The format
of a typical entry in the subscript table
is shown in Figure 20.

The subscript adjective code indicates
to other phases of the compiler that sub-
script calculation is necessary. The off-
set is an index used to find the correct
element in an array associated with a
particular subscript expression. The sec-
ond word of an entry in the subscript table

contains two pointers to information in the
overflow table. The first points to the
subscript information for the subscripted
variable; the seccnd points to the dimen-
sion information for the array indicated Ly
the subscripted variakle.

INDEX MAPPING TABLE

The index mapping table (part of the
Phase 20 load mrodule) is used to aid the
implementation of subkscript optimization.
This table maintains a record of all infor-
mation pertinent to a subscript expression.
Because the computation of any unique sub-
script expression is rlaced in a register,
the number of entries in the table depends
on the numker of registers available for
this purpose. The initial register
assigned to a subscript expression is det-
ermined during the initialization process
for Phase 20. Each entry in the index
mapping table 1is eight bytes in length.
The format of a typical entry in the index
mapping table is shown in Figure 21.

The register number field contains the
numker of the register assigned to the
subscript expression. The dimension number
field contains the number 1, 2, or 3,
depending on the number of dimensions. The
status field indicates whether the register
referenced by this entry is: (1) unas-
signed, (2) assigned to a normal subscript
expression for indexing computation, or (3)
assigned to the address of a dummy vari-
able. The offset field contains the offset
index used to obtain the correct element of
the array associated with a particular
subscript expression. The last two fields
contain pointers to information in the
overflow table.

= T T T =T T 1
|subscript |not used | | | |
|adjective |by | offset | p(subscript) | p(dimension)
| code |Phase 15 | | | |
L L 1 4 A J
1 byte 1 byte 2 bytes 2 bytes 2 Lkytes
Figure 20. Subscript Table Entry Format
r T T v T - T 1
Regis~	Number				
ter	of	Status	Offset	F(subscript)	p(dimension)
numker	Dimen-				
	sions				I
L L L. L L 4 J
1 byte 1 byte 2 bytes 2 bytes 2 bytes

Figure 21. 1Index Mapping Table Entry Format

Arpendix B: Tables Used by Phase Load Modules 79

EPILCG TABLE

The epilog takle is created by Phase 25
when the FUNCTION or SUBROUTINE adjective
code is encountered. An entry is made in
the epilog table for each variable used as
a parameter in the «calling program. The
instructions generated during Phase 25 for
the RETURN entry in the intermediate text
reference the epilog table to return the
value of variables to the calling program.

Each entry
bytes in length.
entry in the
Figure 22.

in the epilog table is four
The format of a typical
epilog table is shown in

L address

T
I
1

T
S |
i

~— -
e e od

1 byte 1 byte 2 bytes

Figure 22. Epilog Table Entry Format

L is the field length of the variable in
the subrrogram, S is the relative position
of the variable in the parameter list of
the calling program, and address 1is the
address of the variakle in the subprogram.

MESSAGE LENGTH TABLE

The message length table is loaded into
main storage as a part of the Phase 30 load

module. It contains the lengths of all the
messages capable of being generated by the
compiler. The length of any message is

obtained by using the number corresponding
to that message as a displacement from the
start of the message length table.

The message length table has the follow-
ing format:

Length of first message

-TTM

Length of second message

s ol e s, i ity e, e e

Length of last message

frm e ey s i o g . s e

b

MESSAGE ADDRESS TABLE

The message address takle is loaded into
main storage as a part of the Phase 30 load
module. It contains the displacements fromw
the start of the message text takle of all
the mwessages capable of being generated by
the compiler. The displacement of any
message is obtained by using the number
corresponding to the message multiplied by
two as a displacement from the start of the
message address table.

The message address takle has the fol-

lowing format:

- e e e e e e e e e e e e

|Displacement cf text for first message
| from start of the message text talkle

b ———

|Displacement of text for seccnd message
| fror start of the message text takle
b—-
| -
|«
|

|Displacement of text for last message
| from start of the message text table

| I -

e e e b e s e e s e e e e

2 bytes

MESSAGE TEXT TABLE

The message text table is loaded into
main storage as a rart of the Phase 30 load
module. It contains all the messages capa-

ble of being generated by the compiler.
Each message 1is obtained Ly wusing the
displacements contained in the message

address table.

The message text table has the following
format:

"
| Message text corresponding to first

| message number

- - -
| Message text corresponding to second

| message number

-
-
-

|Message text corresponding to last

| ressage number
L

B ——
T e R P

1 kyte

80

Variable length

The resident takles of the compiler are:

The dictionary.

The overflow table.

The segment address list (SEGMAL).
The patch table.

The blocking table (resident
PRFRM compilations).

e The BLDL table (resident only for PRFRM
compilations).

only for

The dictionary is a reference area con-
taining information about variables,
arrays, constants, data set reference num-
bers, etc., used in the source mwodule. The
overflow table contains all dimension, sub-
script, and statement number information
within the source module. SEGMAL is used
for main storage allocation within the
compiler. The patch takle contains infor-
maticn to be used to modify compiler compo-
nents. The blocking table contains the
information necessary for deblocking com-
piler input and blocking compiler output
for PRFRM compilations. The BLDL takle
contains the information necessary for
transferring contrcl from one component of
the compiler to the next for PRFRM compila-
tions.

THE DICTIONARY

The dictionary (constructed by Phases 7,
10D, and 10E) is used and modified by Phase
12 in address assignment, and is further
used by Phase 14 when addresses from the
dictionary replace pointers tc the diction-
ary in the interrediate text entries (refer
to Arpendix D). For SPACE compilations,
Phase 14 frees +the dictionary area of
storage for use by subsequent phases.

The dictionary is organized as a series
of chains related by the dictionary index,
which indicates the first entry in each
chain. There are 15 chains, used for
various entries, as follows:

e Eleven are organized on the basis of
length of the symbol being entered
(e.g., DO has a length of 2, END has a

length of 3, etc.). The first chain is
for entries of length 1, the second is
for entries of length 2, the third is
for entries of length 3, and so on.

These chains contain entries for re-
served words (chains 2-11), in-line
functions, variakles, and arrays.

APPENDIX C: RESIDENT TABLES

e Cne chain for real constants.
e One chain for integer constants.

e Cne chain for integer data set ref-
erence numkers.
e One chain for double-precision con-
stants.
Phase 7 Processing
Phase 7 allocates storage for the dic-

tionary, and then enters all reserved words
(words that indicate a specific FORTRAN
statement) into the dictionary.

Figure 23 illustrates the dictionary
after it is constructed by Phase 7.

The dictionary, dictionary index, the
overflow table, overflow table index, and
SEGMAL are in main storage in the following
relative positions.

r— 1
Upper storage | Dictionary Index |
I !
| Dictionary]
I | |
b~ - —

b-- —§ -1

Lower storage | Overflow Takle |

—"
| SEGMAL |Overflow Takle Index|
L

L ———— -4

This order is set wup during Phase 7.
(Refer to the Phase 7 discussion.)

Phases 10D and 10E Prccessing

Additions to the dictionary occur as
entries are made to the various chains
during Phases 10D and 10E processing. To
enter an itemr in the dictionary, the perti-

nent chain is located via the dictionary
index. The chain is searched until the
last entry is found. The current end-of-

chain indicator is rerlaced with a pointer
to the new entry; the new entry is then
marked as the end of the chain.

For example, assume the variable ABC is
to be entered in the dictionary. ABC
belongs in the third chain of the diction-
ary (length 3). Using the dictionary
index, the first entry of the chain for

Appendix C: Resident Tables 81

length 3 is obtained. Assume that Figure
23 indicates the condition of the diction-
ary at this time. The chain for 1length 3
is searched for the last entry (the entry
for DIM), which is modified to appear as:

r T
Jpointer to the entrylentry for
|for ABC | DIM

L L

bt e e

DICTIONARY INDEX

The entry for ABC appears as:

r

T 1
|end of |entry for |
| chain |ABC |
L 4 d

When the dictionary and overflow table

overlap, a
entries are

message is issued; no new
made; and compilation proceeds.

r

|end of the
-——|pointer to
-—|pointer to
| pointer to
| pointer to
| pointer to
| pointer to
| pointer to
| pointer to
pointer to
pointer to
|end of the
end of the
end of the
end of the

chain of length 1

the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
the first entry in
chain for
chain for
chain for
chain for

the
the
the
the
the
the
the
the
the
the

real constants

chain
chain
chain
chain
chain
chain
chain
chain
chain
chain
integer constants

of
of
of
of
of
of
of
of
of
of

length
length
length
length
length
length
length
length

data set reference nunkers
doukle-precision constants

length 10
length 11

woJoumEwN

—_————

s
| There are
during Phase 7.

L

P Sy S S S —————

several chains that have no entries when the dictionary is constructed|
That is, there are no reserved words of length 1, and no entries|
would be made in the data set reference numker chain or constant chains. |

J

r
i

———— e e ——————y

¥

T
pointer to|entry for
the entry | DO

for GO |
iR

[e e e oy

o o e e oy

T
pointer to|entry for
the entry |

for IF

GO
|

end of
chain

entry for
IF

b s s s el
e . . . e}

l-—-—-—-!

——-—-—-———u———-—-———n———-————-Tn+--—-—-——n—-+q

f ' T

$

r-
L

¥

T b |

pointer tojentry for |
the entry | END |

for ABS | [
1 4

L.

-~

o o e e g

|pointer to
|the entry |
for DIM

T

|entry for
ABS

|

iy

end of
chain

entry for
DIM

T
- — ———
Y]

o — —

4 s e .

end of
chain

= e

| SUBROUTINE
L

'

Ll

|entry for
| EQUIVA-

| LENCE

N

1
|entry for :
J

[o e oo i i, i, e o . e St e e s et

end of
chain

o o . @y
APV

[o e e o e e s . e S (o S St o . e S T — . 7o S i 7ot . S, S S S, e, . e e, e S, s, e,)

Figure 23.

82

| S o

The Dictionary as Constructed by Phase 7

r |
|Note: See Figure 26 for|
|the general format of aj
|dictionary entry. i
L J

Phase 12 Processing

During the Phase 12 processing, address-
es are assigned to the symbols entered in
the first six chains of the dictionary. 1In
assigning these addresses, Phase 12 uses
the contents of the dictionary entries.
The addresses replace: (1) the pointers to
following entries in the dictionary, and
(2) the end-of-chain indicators. To ensure
that the chain is not broken, the chain is
continued by modifying the pointer to the
entry just assigned an address. Figures 24
and 25 illustrate two cases of the "before"
and "after"™ in removing an entry from a
dictionary chain. Figure 24 indicates
removal of an entry from the end of the
chain. Figure 25 indicates removal of an
entry from the middle cf the chain.

Phase 14 Processing

During Phase 14 processing, each pointer
(in the intermediate text) to a dictionary
entry is replaced by the address assigned
to the symbol within the dictionary entry.

Dicticnary Entry Format

The entries to the dictionary may vary;

however, they all have the same general
form. Figure 26 indicates this general
form.
r X T T T T T 1
Chain	Usage	Mcde	Image	Address	Size
address	field	Type	field	field	[field
£ield		f£ield			
L L A 1 L L J
2 1 1 1-11 2 2
bytes byte byte Lytes bytes bytes
Figure 26. General Form of a Dictionary

Entry

Each field contains specific information as
indicated below:

CHAIN ADDRESS FIELD: The chain address

field 1is used to maintain the linkage
between the various elements of the chain.
It either contains the relative pointer to
the next entry or indicates that its asso-

Refer to Appendix D for the modification of ciated entry is the 1last entry in the
the intermediate text. chain.
1
d R | [}
r T 1 T T 1
I [|| O |
"before" an address |pointer to the entry|entry for DIM | | end of chain|entry for ABC |
is assigned to the | for ABC | | |
variable ABC | | |1 | |
L i — J L i I, J
|' Pty T g
"after" an address |end of chain |entry for DIM | | assigned ad-|entry for ABC |
is assigned to the | | | | dress of ABC| |
variable ABC | | (I | |
L L J L L]
Figure 24. Removing an Entry From the End of a Dictionary Chain
——— — —
i) T] r L T-_i°-1

"before"™ an address
is assigned to

the variable ABC |for ABC
L

r T
|pointer tolentryj
| the entry |for
|AAR
i

r
pointer to	entry	
	the entry	jfor
	for ccc	ABC
T L]

|pointer tojentry|
|the entry |for |

| for DDD jcce |
L L =d

e

"after" an address
is assigned to

the variable ABC |for cccC
L

r T
|pointer to|entry|
| the entry |for
|AAR
4

—

v T 1
|pointer to|entry|
|the entry |for |
| for DDD jccec |
i L]

r T
|assigned |entry
| |address of|for
| |ABC | ABC

-4 1

b e e e

Figure 25.

Removing an Entry From the Middle of a Dictionary Chain

Appendix C: Resident Tables 83

USAGE _FIELD: The usage field is divided
into eight subfields. Each subfield is one
bit long and is numbered from 0 through 7,
inclusive. Figure 27 indicates the func-
tion of each subfield in the usage field.

r T 1
|Usage field| Function of the field |
| subfield | |
F $ 1
| Bit 0 |Indicates if the mode of the|
| |entry has been defined |
1 4 - 4
1] T 1
| Bit 1 |Indicates if the type of thej|
| |entry has been defined |
{ L d
1) T 1
| Bit 2 |Indicates if the entry is in|
| | COMMON |
e T : —
| Bit 3 |Indicates if the entry is|
| |equated

. + _ -
| Bit & |Indicates if the entry is|
| |assigned an address |
e -
| Bit 5 |Indicates if this is the]
| lentry for the root of anf
| | EQUIVALENCE group (see Phase]
| 112) I
e ¢ {
| Bit 6 |Indicates 1if the entry rep-|
| |resents double precision |
1 1 ¥
r T B
| Bit 7 |Indicates if the entry is for|
| lan in-line function or anj
| |external reference.

L L J
Figure 27. Function of Each Subfield in

the Dictionary Usage Field

MODE/TYPE FIELD: This field is divided
into two parts (each four bits long). The
first four bits are used to indicate the
mode of an entry, while the last four bits
are used to indicate the type. For exam-

84

IMAGE FIELD:

ple, a real guantity has the mode code 7;
therefore, the mode field for a real is
0111 (the Dbit ccnfiguration for 7). Simi-
larly, a subscripted variable has the type
code C; therefore, the type field for a
sukbscripted variakle is 1100 (the bit con-
figuration for C). The modestype field for
a real subscripted variable is 01111100.
The various mode/type combinations possible
are indicated in Figure 28.

The image field contains the
arpropriate image of the symbol. The
length of the symbol determines the length
of the field.

ADDRESS FIELD: The address field is pre-

SIZE FIELD:

sent in dictionary entries for:

¢ Reserved words =-- to indicate the posi-
ticn of the disrlacement of the proc-
essing routine for that reserved word
in the Phase 10D or Phase 10E Routine
Displacement Table (see Arpendix B).

e In-line functions -- to indicate the
code value used within the compilation
for that in-line function.

e Arrays -- to indicate the displacement
within the overflow table of the dimen-
sion information for that array.

The size field is present for
the dictionary entries that represent
arrays. It indicates the size of the
array.

All fields are present in each diction-
ary entry, except the address field and the
size field. The fields and the phases that
enter information into the fields are indi-
cated in Figure 29.

1.|II.Il.“lllnllt‘nlllﬂlll'l'l]'llll|||||I||II|||.I|I|||II|IIIJ_IIJ 1||m4|J1IJTIII“IIII"II||I“||.Ill"
=] | | | TS EEX™ T MM T Dy Qe [=] | |
Fr——————t——— et ——_——_———— e ————————— E N O | | © 1
| | | e | R |
&3] | | i M Hm Dy 0w | | |
T.Il..l.l|“|||_TI.I.||“||||||||I.|i»|..|||l.ll.|||l.|ln |||||||| - “...I.mw||“|||T||T|||T||+||..T|.I|.
A | |] T SOSEE ™ NS QN NHNAQUP VT PO MN-HGQ O I 22} |
o e e e e e e e e e e e e e e e i i it e s e e . e s e e e e e St . o s, . S, o] Vo | (&)
| I] M S~ o
o | |] nNo3 QN0 NHAHQUP T POV MADQOQ~ O T o | -~
lllll |“|||“l|nlll||“lll.||a||.|llIl..|..|.|..||.|l|||.|||||ll|l|||..|ll||.|||.L Mﬁ “ “
m 1 | | * TUBEE™ PONALCO-O e e e e e ——— e e
o e e e e e e e e e e e ——— e e e e e e e e e o - QT | |
| | | O |] Qe (a3} o 3]
<5 | | | * PO HATQA O SO |~ |~ oo oo oo o
p——————t et ——— e ——— e e —————_—_——_———— e ————— - g |] — — - i
| | 1= Hw | |
| I o | o e e b ——— e —— e e
I I > M [0} | | I
! E ! W 1 i Qg | a8 1 A" | B\) K
o | e Q | TPEE™ HB3gLPAO0ER PN I~ I~ QOO0 O | o | o
| DS M B |] LT B R I B R I =
| T W | NG Fp—rt——t—— —— e — — - ——
| | * | ! | t Qe | | |
| [| * | [I Qo a1 AMx [T
p———t——— et —————_—— e —— e —————— - | | Ord IN~NIM~N|OO | OO o |
| | g | [2w | akal Rals =R
! A ! F——— 4 — 4 = — — o — e o e e]
| S | ! | | AR 1AM
| o | ~ o I~ 100 | OO
[ee} | WO] OXPOHE () A QMO NN HWHIIOdLDPA0S 1] el |-
| N | F—t——t——t———t———t— — e ——
| n | | | |
| * 1 O | i ~ (]
i | * I | i |
T.I...|||'I“lllnllllllnllllllliIllllllllllllllllllu'llllll‘l T|||.II|+||L_T|.||I“IIIILTII'I_T|||1
| |
~ | | I * ARl -@HAGS0 HBAOUWPAHOR | [T I | | N | N [
p————————— e —_————— e —————————— - i T | i | 1 (] 1
t | 1 | e e e e e e e e e e e e e e
O | | 1 * nPoPoUEISP W3 ROPHO0R| [} Q| | | I ! 1
o e e s e e e i e e e e s s e e e e e e . S S T s i . e S e e e e e . . e e s 5] [o =T | |
[O0)] S |0 W | |
P R b e e e e e e e b e e
o 5 + (% | [a] ra
| -~ © Le] 1] o™ | o | © |
i T P [~ © | — [l |
Qn vofcuPOEP | T |- N e e e e e e e e e e]
] E R Q =} | [=) [=)]
& O alE o~ o o]
ol O S | O | - -]
* - | O o e e e — e —
* | agila =N
e e e e e e e e —————————————————— 40| @ H I~ |~N|J]OO | O 1o | ©
[T | e o P |
= ! * DO ROHDBP OT FTOHM ©HOm | O | D R U S S Gr SRR S S
o e o e e o] e e e e e e e e o e s e e e e T S —— i o o ot — s -+ © (=)]] ax (a] ram [£3]
(e SN o |~ oo | o Qo | ©
] [N Q i] | | et |
3] | & o] o b e - e e e e e ——— e e e
[=]] Q]
o i e e e e e i S i e e e S s — s — e e e e e e e . e T e S . e i, S e, e e e e] [= n
| | + [=I o) [an] [aN:] ar 5]
N | ! “ln AN I~ I~ O0C OO jOO | ©
p————t—t—— e —_—————— e ——— 4 ©is ©TT 0 e e e |
[0) L T
2 [U m”w
s ol M e s o s st SR
9} Sim 7}
& M g > =]
[T}] e} |
- £ Q VlQ [] r
[=] £ Le] ¥ [J]
+ 8 Ol H o | M 4] W
n s L b (o] [=] U M
o o e e e e e e e e e e e e o e e e et e i et e e e . S S S S S e s i (o) [e] 2 =} HNO
| 4 3 H W Hiwn 0 Q
o] 9] @ 3] Lol [] + tm
1...'IllIlLTlI‘TIlI!"lIJlIIIIﬂlIllJII'IIIIJII-@uI..ﬂ'Jl'Illll“ll"L []] o H Mw [0] _ M m @ [« (] =
| ™ 0]
= /7 | | | | [| ~— Q| | Q Y] o~ W.i 1] > w
o m | | | | [| I R I | | D M MO e © 0 ° O
I3 /70 o - N | o | = WPy logowni~© 1 9] =] Eo 2 B N | o]] a +$ 0
| 7 = |] | | [=l | O N-H | (V]] o Si1o0tr R o o] e} ©
| o | | | | o | T Q0 | 8] 1 * | A O iMIiHIPD < Q Ao
— — ——— b e e it e e e s et s s s st e s e it e et s e iy e s e s iy e e s e bt et e s ol e s F e, ST R S Y NSRS S T p——

85

Resident Takles

Appendix C

Phases That Enter Information Into Specific Fields of a Dictionary Entry

Figure 29.

THE OVERFLOW TABLE

The overflow table is constructed by
Phases 7, 10D, and 10E. The overflow table
subscript entries are modified by Phase 12
during address assignment; statement number
entries are assigned relative bkranch 1list
numbers. The overflow table is used by:

s Phase 12 -- tc reserve storage for the
kranch 1list.

e Phase 20 -- for subscript optimization.

e Phase 25 -- for the construction of
cbject module coding.

Organization of the Overflow Table

The overflow takle 1is organized as a
series of chains related by the overflow
index. The overflow index indicates the
displacement of the first entry in each
chain relative to the beginning of the
table. There are 11 chains, used for
variocus entries, as follows:

¢ Three chains are organized for the
dimension information of an array; that
is, for 1-, 2-, and 3-dimensional
arrays.

e Three chains are organized for sub-
script. information; that 1is, for 1-,
2-, and 3-dimensional subscripts.

e Five chains are organized for statement
number information. All statement num-
kers ending in 0 and 1 are entered in
the first chain. The remaining chains
handle statement numbers ending in 2
and 3, 4 and 5, 6 and 7, and 8 and 9,
respectively.

construction of the Overflow Table

Phase 7 allocates storage for the over-
flow table. Because there are no reserved
words entered in the overflow table as in
the dictionary, only the overflow index is
actually constructed. The index contains
the end-of-chain indicator for each chain,
as no entries exist in any chain at this
time. Figure 30 indicates the overflow
table as it appears after it is constructed
by Phase 7.

Phases 10D and 10E construct all entries
to the overflow table. Each entry is
entered in an overflow table chain; e.g.,
assume the 1-dimensional array ARRY1l is the
first array entered in Phase 10D. The
first overflow index entry is modified to
contain:

86

-

= 1
|pointer to the dimension entry for ARRY1 |
L J

The overflow table entry (in the first
array chain) agpears as:

F T 1
{end of chain |entry for ARRY1 |
L _— 1 1

When the next 1-dimensional array, ARRY2,
is entered in the overflow takle, the entry
for ARRY1 is rodified as follows:

[——————————

T - -
| pointer to the entry|entry for ARRY1 |
| for ARRY2 | |
(I i 4

and the entry for ARRYZ2 agppears as:

- = - a

|end of chain |entry for ARRY2
4

b

|

The entries to other chains are made in
like manner during the Phase 10D and the
Phase 10E processing.

r |
J]end of chain for information on]
| 1-dirensional arrays |
F - 1
| end of chain for information on|
| 2-dimensional arrays]
-4

| end of chain for information onj|
| 3-dirensional arrays |
T 1
| end of chain for information on|
J1-dimensional sukscrirts |
b---- - i
| end of chain for information on|
| 2-dimensional subscrirpts |
b=- i
| end of chain for information on|
| 3-dimensional subscrigts |
b-- - 1
|end of chain for information on statement|
|nunkers ending in 0 or 1 |
b J
r h
|end of chain for information on statement|
| numbers ending in 2 or 3 |
b= 1
|end of chain for information on statement|
| numbers ending in 4 or 5 |
———— —_— 4
i

|end of chain for information on statement|
|numkers ending in 6 or 7 |
; -1

s
|end of chain for information on statement|
| numkers ending in 8 or 9 |
L —_— J
The Overflow Table Index as
Constructed by Phase 7

Figure 30.

Use of the Overflow Table

Phase 12 modifies the statement number
chains when +the branch 1list table for
statement numbers (see Appendix F) is
prepared initially by Phase 12. The chain
field is replaced by a number that indi-
cetes the position the statement number has
in the branch list table.

Phases 14 and 15 do not use the overflow
table.

Phase 20 uses the information about
subscripted expressions in rperforming its
function of subscript optimization. This
information is obtained via a pointer, in

the intermediate text, to the pertinent
overflow table entry (in a subscript
chain).

Phase 25 uses the branch 1list table

number, assigned by Phase 12, to determine
the position of a statement number in the
branch table. (Phase 25 can then insert
the object-time address, associated with
the statement number, in the table.) The
number is obtained via a pointer, in the
statement number intermediate text entry,
to the overflow takle.

Overflow Table Entry

An entry in the overflow table has one
of three formats:

1. Dimension.
2. Subscript.
3. Statement number.

DIMENSION ENTRY:
formed for each array. An
defined as:

A dimension entry is
array may be

e 1-dimensional, e.g., ARRAY (D1).
¢ 2-dimensional, e.g., ARRAY (D1,D2).
¢ 3-dimensional, e.g., ARRAY (D1,D2,D3).

One-dimensional arrays are entered in
the first dimension chain of the overflow
table, 2-dimensional arrays in the second,
and 3-dimensional arrays in the third. The
formats for +the entries of 1-, 2-, and
3-dimensional arrays are indicated in Fig-
ure 31.

[S etk Sttty
|Chain| 1 |Length]|

R B, B 1

[Chain] 2 |Length|Dl#Length]|

P $ 1 1
{Chain] 3 |Length|D1*Length|D1*D2*Length|
L L —_————— 1. 1 1

2 2 2 2 2
bytes bytes bytes kytes bytes

Format of Dimension Information
in the Overflow Takle

Figure 31.

The fields of a dimension entry contain
the following information:

¢ The first field contains the displace-
ment (relative tc the beginning of the
overflow takle) of the next element in
the chain.

¢ The second field is a digit, either 1,
2, or 3, to indicate whether one, two,
or three fields will follow. This is
the same as the number of dimensions.

e The next field is of the form:

r T T 1
| L | D1*L | D1*D2*L |
L 1 Lo]
where:

D1*L and D1*D2*L are optiocnal fields
depending on the dimension.

I indicates the length of an element in
kytes (e.g., U4 for integer or real
quantities and 8 for double-precision
quantities).

D1 represents the value of the first
dimension of the array.

D2 represents the value of the second

dimension of the array.

SUBSCRIPT ENTRY: A subscript entry is

formed for each subscripted variable. A
subscripted variable may be defined as:

. 1—dimensional, e.g., A(I)
e 2-dimensional, e.g., A(I,J)
¢ 3-dimensional, e.g., A(I,J,K)

One-dimensional subscripts are entered
in the first subscript chain of the over-
flow table, 2-dimensional subscripts in the
second, and 3-dimensional subscripts in the
third. The formats for the entries of 1-,
2-, and 3-dimensional subscripts are illus-
trated in Figure 32.

Appendix C: Resident Tables 87

r T T h)

| Chain | C1 | pointer to V1 in |

| | | the dictionary |

L L 4 —_— . d

~— T T X T T _ X 1

| Chain | Cl1 | pointer to V1l in | €2 | pointer to V2 in |

| | | the dictionary | | the dictionary |

b B T O i i — J

r T T-°-__‘ - T——T T T___ . T L] . B -
| Chain | €1 | pointer to V1 in | C2 | pointer to V2 in | C3 | pointer to V3 in |
| | | the dictionary | | the dictionary | | the dictionary

L R S L ——d ——d e 4 L J
2 bytes 2 bytes 2 bkytes 2 bytes 2 kytes 2 bytes 2 bytes

Figure 32. Format of Subscript Information in the Overflow Table

The fields of a subscript entry contain

the following information:

e The first field ccntains the displace-
ment (relative to the beginning of the
overflow takle) of the next element in
the chain.

¢ The second and third, fourth and fifth,
and sixth and seventh fields represent
the first, second, and third dimensions
of the subscript. The explanation and
use of c1i, vi, c2, v2, C3, and V3 are

given in Appendix E.

STATEMENT NUMBER ENTRY: A statement number
entry 1is constructed for each statement
number encountered in the source state-
ments. The format of an entry in the
statement number chains is illustrated in
Figure 33.

T 1 1
|Chain |Usage |Packed Statement Number |
L L A e - J

1 byte 1 byte 3 bytes

Figure 33. Format of Statement Number
Information in the Overflow

Table
The fields of a statement number entry

contain the following information:

e The first field contains the displace-
ment (relative to the beginning of the
overflow table) of the next element in
the chain.

e The second field is a usage field where
each bit represents the following:

88

T T
| Usagel
|Field|
{Bit |
—————e

0 |Indicates if the statement num-

|ber is defined
1
T

Functicn of the Field

1 |Indicates if the statement num-|
|ber is referenced |
1
T -4
2 |Indicates if the statement num-|
jber rerresents the end of a DO|

|
|
t
|
|
t
|
|
| |loop
3
|
|
|
¢
|
|
|

s s s s s e o

——

3 |Indicates if the statement num-
| ber rerresents a specification
|statement

+___

4 |Indicates if the statement num-|

i SR SAp—

|ber represents a FORMAT state-|

| ment |

e S -
| S5 |Indicates if the statement num-|
| |ber indicates DO nesting errors|
e -
| 6 |Not used |
e !
| 7 |Not used |
P R -)
e The third field contains the actual

statement numker (as it arpeared in the
source statement) in packed form.

SEGMAL

SEGMAL is constructed by Phase 7 and
contains the beginning and ending address
of each segment of main storage assigned to
the dictionary and overflow table by Phase
7. This main storage is assigned to the
comgiler as a result of the GETMAIN macro-
instruction issued by the compiler during
Phase 7. Phases 10D and 10E use SEGMAL as

they enter various items in the dictionary
and the overflow tatle.

Phase 7 Processing

When SEGMAL 1is constructed by Phase 7,
the various segments are put into ascending
order; that is, the segment entries of main
storage are sorted. Contiguous segments
are then combined into a single segment.

The communication area contains
information to indicate which segment is
currently being used for the overflow table
and which is currently being used for the
dictionary.

Phases 10D and 10E Processing

Phases 10D and 10E use SEGMAL when new

For SPACE compila-
SEGMAL to free the
dic-

table are required.
tions, Phase 14 wuses
main storage areas allocated to the
tionary.

Format of SEGMAL

SEGMAL has the following form for N
segments, where each segment is entered in

ascending sequence Ly address. The entry
for each segment consists of the Dbeginning
address of the segment and the ending

address of the segment. (The storage loca-
tion containing the ending address of seg-
ment N is adjacent to the storage location
containing the starting address of the
overflow index. The starting address of
the overflow index is an entry in the
communication area.)

Note: The ending address of
minus the beginning address of

segment N
segment 1

segments of the dictionary and overflow must be less than or equal to 65536.

4 bytes 4 bytes 4 bytes 4 kytes 4 bytes 4 bytes
r T R T . R - T . - -T . A =T~ N 1
Beginning	Ending ad-	Beginning	Ending	Beginning	Ending ad-
address of	dress of	address of	addr -~ { address of	dress of	
segment 1	segment 1	segment 2	seg	segment N	segment N
L L L L [I L J

entry for segment 1

entry for segment N

Appendix C: Resident Tables 89

PATCH TABLE

The patch table (100 bytes) is a part of the interface module. It is used only if the
patch facility has been enabled and if patch records precede the source statements of the
FORTRAN source module being compiled. The patch table contains a converted form (for
internal use) of the information contained in the ratch records. The patch takle has the
following format:

r T 1
|Identifier for first module to be modified | 2 bytes |
L 4 |
r T 1
|Relative address of first patch for this module | 2 bytes |
— e —— ——— —_——— 1 |
T h)
|Length (in bytes) of first patch for this module | 2 bytes |
L - -—— - +_.__ 4
r 1
|First patch for this module. | Variable |
: - ¥ i
[- I [
- I I
= R
“““““ - T 1
|Relative address of last patch for this module | 2 bytes |
L ———— —— —— 1 4
r T a
|Length (in bytes) of last patch for this module | 2 bytes |
U —— 1 1
|Last patch for this module | Variable |
8 1
T - T T T T ‘I
[00000001 (Indicates last patch for this module) | 4 bytes |
b - - { 4
- I |
|- [- |
I . I |
; — — -4 1
|Identifier for last module to be modified | 2 bytes |
e - -+ 1
|Relative address of first patch for this module | 2 bytes |
L 1 4
r T 1
|Length (in bytes) of first patch for this module | 2 bytes |
+ ———— 1 i
r 1 h
|First patch for this module | Variable |
b - - t 1
[- |- I
|- |- I
|- I I
b - ¢ 1
|Relative address cf last patch for this module | 2 bytes |
[—_— — 1 d
r T 1
|Length (in bytes) of last patch for this module | 2 bytes |
3 _— 1 1
r 13 1
|Last patch for this module | Variable |
8 - —— 3 i
v T h)
|00000001 (Indicates last patch for this module) | 4 bytes |
p=—- + 1
|22 (Indicates last module to be patched) | 2 bytes
L L J

90

BLOCKING TABLE

The blocking table is constructed by
Phase 7 only for PRFRM compilations. Phase
7 constructs a klocking table entry for
each of the data ccntrol blocks that were
opened by Phase 1. The blocking table
contains the information required for
deblocking compiler input and for blocking
compiler output.

Each blocking table entry (24 bytes in
length) has the following format:

Logical record length*
(2 bytes)

Blocking factorx
(2 bytes)

—— — — e e

Address of buffer 2
(4 bytes)

Address of buffer 1

(4 bytes)
Address of next logical record
within the current kuffer

(4 Lkytes)

P SR “Sp—— U S

Address to or from which the next
record is to be moved
(4 bytes)

— i . —— . S . e Sy e

Numker of logical records in current
buffer that remain to be processed
(2 bytes)

P S S S

Indicates if a READ or WRITE has
been issued for data set
(1 byte)

Indicates whether data set has been
previously referenced
(1 byte)

*80 for SYSIN, SYSLIN, and SYSPUNCH;

8
121 for SYSPRINT.

[o e e e e . e . e . S . e . .

[RPN TpE——— S

BLDL TABLE

The BLDL table is ccnstructed by Phase 7
only for PRFRM compilations. It is built
using a BLDL wacro-instruction. Phase 7
supplies, as a parameter of the BLDL macro-
instruction, the address of a skeleton BLDL
table. The skeleton build table contains:
(1) the names (8 bytes per name) of the
compiler components to which control may be
transferred via an XCTL macro-instruction,
and (2) a 28-byte field for each of the

above names. The corresponding kuild
routine completes the skeleton BLDL takle
by glacing information into these 28-byte
fields. This information is obtained from
the data set directory of the partitioned
data set containing the FORTRAN IV (E)
comgpiler. This information (such as the
physical location of each compiler compo-
nent in the partitiocned data set) is
required for transferring control for PRFRM
compilations from one component of the
compiler to the next.

Each entry in the BLDL table is 36 bytes
in length. The format of the BLDL table is
as fcllows:

r——- —_

1
Comgiler	Directory information for
conponent	ccmpiler component
(8 bytes)	(28 bytes)
- ~—=t —- 4
| IESFARBO |
| (Phase 1- |Directory information for|
| suksequent | Phase 1 (subsequent |
|entries |entries) |
¢ $ 4
| IETFAKAOQ | |
| (Print buffer |Directory information for|
| module) |Print buffer module
1 i |
- =TT - Ll
| IEJFEAAQ | Directory information for|
| (Phase 7) | Phase 7 |
_______________ 1 d
T 1
| IEJFGAAO |Directory information for|
| (Phase 10D) | Phase 10D |
I iR |
v T |
| IEJFJAAO | Directory information for|
| (Phase 10E) | Phase 10E |
—_———— 1 4
T 1
| TEJFJGAOQ |Directory information for|
| (Interlude 10E)| Interlude 10E |
b-- -+ 1
| IEJFLAAO |Directory information for|
| (Phase 12) | Phase 12 |
r — 4
| IEJFNAAO |Directory information for|
| (Phase 14) | Phase 14 |
t ¢ 1
| IEJFNGAO |Directory information for|
| (Interlude 14) |Interlude 14 |
—_— 1 d
i

+
|Directory information for|

| IESFPAAO

| (Phase 15) | Phase 15 |
b= + -
| IEJFPGAO |Directory information for|

| (Interlude 15) |Interlude 15 |
1

¢ 1 -
| IEJFRAAO |Directory information for|
| (Phase 20) | Phase 20 I
— 1 1
T T

| IEJFVAAOQ |Directory information for|
| (Phase 25) |Phase 25 |
L J
r - - 1
| IEJFXAAQ |Directory information for|
| (Phase 30) | Phase 30 |
R L 3
Appendix C: Resident Takles 921

APPENDIX D: INTERMEDIATE TEXT

Intermediate text is an internal rep-
resentation of the source module from which
the machine language instructions are pro-
duced. The conversion from intermediate
text to machine language instructions
requires information about variables, con-
stants, arrays, statement numbers, in-line
functions, and subscripts. This informa-
tion, derived from the source statements,
is contained in the dictionary and overflow
table, and is referenced by the intermedi-
ate text. The dictionary and overflow
table supplement the intermediate text in
the generation of machine instructions by
the various phases of the compiler.

Phases 10D and 10E create intermediate
text for use as input to subsequent phases
of the compiler. Intermediate text is
created by Phase 10D for the following
declarative statements:

s FORMAT
¢ SUBROUTINE or FUNCTION

Phase 10E creates intermediate text for
all statement functions and executable
statements in the source wodule and for
FORMAT statements interspersed within the
executable statements.

Phase 12 does not use the intermediate
text during its processing; all of the
remaining phases (14,15,20,25, and 30) do
use the intermediate text during process-
ing.

Phase 14 converts the FORMAT intermedi-
ate text to a form acceptable to IHCFCOME.
It also inserts the addresses assigned by
Phase 12 to variables, constants, etc.,
into the intermediate text. In addition,
Phase 14 rearranges the intermediate text
entries of READ/WRITE statements and
inserts implied DO and end DO adjective
codes into the intermediate text when an
implied DO is encountered in a READ/WRITE
statement.

Phase 15 reorders the sequence of inter-
mediate text entries in statements that can
contain arithmetic expressions, and modi-
fies these entries to a format that closely
resembles machine language instructions.
Machine operation codes and registers (when

required) are inserted in the intermediate
text. Argument 1lists for external and
function references are created by modify-

ing the intermediate text for those state-

92

ments. In-line function references are
processed by generating the appropriate
instruction format(s) and a word for the
in-line function call.

Phase 20 modifies the intermediate text
entries that represent subscript expres-
sions. Registers are assigned to subscript
expressions (once they have been initially
computed) and are inserted in the text
entries for thcse expressions.

Phase 25 uses the intermediate text in
conjunction with the overflow table to
generate the okject module instructions.

Phase 30 uses the intermediate text to
generate any error and warning messages and
to process the END statement.

AN ENTRY IN THE INTERMEDIATE TEXT

The intermediate text is constructed by
Phases 10D and 10E for some declarative
statements, all statement functions, and
all executable statements. Each statement
is represented in the intermediate text by
one or more intermediate text words. (An
intermediate text word is four bytes long.)
This word normally contains three fields
(as illustrated in Figure 34).

- i i 1

| adjective code | mode/type | pointer |

| field | field | field

| I | |

(R ————1 L 1
1 kyte 1 byte 2 bytes

Figure 34. Intermediate Text Word Format

Adjective Code Field

The adjective code field in the initial
interrediate text word indicates the type
of statement for which the intermediate

text entries are constructed, i.e.:

® Reserved word, e.g., DO,CALL, GOTO.
e Statement function (SF).

e Arithmetic.

The adjective codes
intermediate text words for a
indicate:

in the subsequent
statement

e Delimiters, i.e., + - * / ** () ,
o The end of a statement (end mark)
e An error

The adjective code 1is composed of two
hexadecimal digits. The various adjective
codes possible (and their use) are indicat-
ed in Figure 35.

Mode/Type Field

field indicates the mode
symbol; e.g., a real
function for a functicn name, or dummy
variable for the variable name. These
mode/type codes are the same as those used
in the dictionary entries (refer to Appen-
dix C).

The modes/type
and the type of a

In the word with an end mark adjective
code, another indicator may appear in the
mode/type field. Normally, this field con-
tains =zeros; however, 1if any errors or
warnings are detected in a statement, this
field contains a hexadecimal 01.

If errors or warnings were detected, the
error/warning message number appears in the
mode/type field of the word inserted in the
intermediate text to represent that
error/warning. Exrrors and warnings are
detected by Phases 10D, 10E, 12, 14, 15,
and 20.

Pcinter Field

The pointer field consists of the last
two kytes of the intermediate text word.
It normally contains a relative pointer to
the dictionary or cverflow table entry for
the symbol with which the adjective code is
associated, e.g., the term +A has a +
adjective code and an associated pointer
field that contains a relative pointer to
the dictionary entry for A. The pointer
field may also be used to contain either
the increment of a DO or implied DO vari-
able, or the internal statement number in
the word containing the end mark or the
error/warning adjective code.

The internal statement number is
assigned during Phases 10D and 10E to each
FORTRAN source statement. This number dif-
fers from the user-assigned statement num=-
ber. It is assigned whether or not inter-
mediate text is to be created for that
statement; therefore, there may be gaps in

the internal statement numbers arpearing in
the intermediate text. Errors in the
source module may cause the same statement
numter to be assigned more than once. If
the user has requested a source 1listing,
the internal statement number assigned to
each statement aprears next to that state-
ment in the listing.

An Example of an Interxmediate Text Entry

For the statement
3 IF (+19 - MART) 11, 7, 61

the intermediate text created by Phase 10E
is:

| o i i
| adjective code | mcdestype | pointer |
] field i field | field |
| | I |
b $ + |
| statement | statement | p(3)

| numker | number | |
b--- ———t + -4
| arithmetic IF | 00 | 0000

p-—-- + .
] (| 0o | 0000 |
pommmmmm e o= + -4
| unary + | integer | p(19) |
| | ccnstant | |
pommmmmm e == o 1
| - | integer | £(MART) |
| | variable | |
t ¥ + -
|) | statement | p(11)]
| | number | |
pommmm oo 1 t -
| ! | statement | p(7) |
| | number | |
it == ¥ |
| v | statement | p(6l) |
| | number | |
pommmmmm oo -—t- -4
end mark	00	internal
		statement
		number
—- + } 4		
1 byte	1 kyte	2 bytes
IL_ — L e — ,‘		
p(x) indicates a pointer to the overflow		

|takle entry or the dictionary entry for|

| %. |
L J

Unique Forms of Intermediate Text

When the intermediate text is created,
there are four unique forms: the text for
FORMAT statements, sukscripted variables,
COMMON statements, and EQUIVALENCE state-
ments.

BAppendix D: Intermediate Text 93

hé

r T T T T T T T Y T T T Rl T T T bl
INL | | | | | | | | | | | | | | | |
o | | | | | | | | | 1 | |
i\w |0 11 2 3 |4 15 |6 7 | 8 19 a |B c Ip |E |F i |
9\ | | 1 | | | | | | | | |
h\ | | | | | | | | | | | |
] + 4 [} 1 1 1 1
T T T T LB T T T
0 | |- K 1 1= . | 11END |ILLEGAL|}+ 1~ * / *% FUNC (
| | | | | ARGU- | MARK| | |
I I I i] MENT |———m{ I |
| | | | | | | | n2o | | |
1 X 1 1 Il 4 ;N) 1
k! T T T T T T T T
1 |AOP |UNARY SAOP SIZE OF|END | | | UNARY | 10 .
MINUS ARRAY |MARK | | 1 PLUS | APOSTRCFHE
+ H + + +
2 IN-19|ARITH- | 1 | | |
STM |LINE |METIC M 1% | | BLANK |
FUNC |IF i I |
1 4]
T T T
3 | | | i | |
1 1 1]] 1 + 4 1]
L] 1 T T T T T T T T
4 s | | | | | | BCo | i |
4 1 1 1 1
Bl T T T Al
S T LCR | | S | M | | | | INTEGER
IC | Y |0 [5 t 1
6 |0 | |0 B L D | | | DOUBLE PRECISION
{ M T T I} t :
7 |R L P R I v | REAL
+ o a A . P I t +
8 |E LCER | | | A IR |D Ic L D | |
| | | D |E |D |T Y E | SRDAO| 1
[l 4 i
T T T
9 INTEGER |DOUBLE |REAL COMMON | ECUIVA- | EXTER- DIMEN- | | SUBROU- |
LENCE |NAL SION | | TINE | i
+ + + : 4 ¢ 4 ¢ ¢ {
A |FUNC- | FORMAT|END |CON- |UNCONDI-|COMPUT-|BACK- |REWIND | END WRITE |READ |[WRITE|READ |DO | STMT. | | 1
TICN DO TINUE|TIONAL |ED |SPACE | FILE |BINARY |BINARY|BCD |BCD | |NO. | | |
|Go TC GO TO i | | DEF. | | |
1 il } [l]
1 T T T 1
B END CALL |SF ARITH BEGIN END RETURN |STOP PAUSE|ARITH |IMP |ERROR [WARNING [} |
1/0 1/0 IF |DO |MESS- |MESS- i |
| LIST 1IST i AGE |AGE |
¥ : =t t {
c | | | | | | | |
| | | | | | |
1 1 1 1 1] 4
T T T T T T T
D | | | | | | |
] 4] 3 1 1 i] 1
T T T T T T L T T
E | | | | | | | | | |
L i 1 1 4 (] 1 /] 1 (] Il
r T T T T T T T T T T
| F | | | | | | | | | |
} 1 1 L 1 L L 1 L (] 1
|t° subject to change in later rhases.
|11 The *08"' end mark is a transient code that exists in Phases 10D and 10E only. It is used to generate the '16” end mark in
| intermediate text.
L F]

Figure 35.

Adjective Codes as Used in Phases 100 and 10E

FORMAT STATEMENTS: For FORMAT statements,
the adjective code field of the first
intermediate text word of the statement

indicates a FORMAT statement; the remaining

two fields contain three bytes of the
FORMAT statement card image. The remainder
of the card image of the FORMAT statement

in the following intermediate text
For example, the statement;

appears
words.

12 FORMAT (F20.5,16)

appears in the intermediate text as:

The second word is of the form:

T i i 1
| adjective code| modes/type | pointer |
| field | field | field |
| | | I
b . + 1
| p(subscrirt |p(dimension |
| information) | information) |
b= o 1
| 2 bytes | 2 bytes |
b-- L 1

|The first field contains a relative poin-|

|ter to the sukscrirt information in

the|

|overflow table if the subscripted expres-|

r T T 1 |sion contains variakles. If the sub-|
| | | | | scripted expression does not containl|
| adjective | niodestype | pointer | |variakles, this field contains zeros. i
| code field | field | field | | [
| | | | |The second field ccntains a relative|
t + - 4 |pointer +to the dimension information inj|
| statement | statement | | |the overflow table for the array that|
| number | number | p(12) | | contains the subscrirted expression. For|
t + + T | |example, if A (I,J) 1is an element in|
| FORMAT | (| F | 2 | |array A, the field contains the ©pointer|
b —— } --4 + -4 |to the dirension information for array A.|
| o |- I 5 |« 1 t- -)
L 4 4] 4
v T T T 1
| I | 6 |) |Eklank |
- 1 L 1 4 The statement:
| blanks represent the remaining card |
| columns to column 72 | APPLE = A(POT,3) + B(2,1)
| (each card column represents 1 byte) |
b T T | appears in the intermediate text as:
| | dinternal |
| end mark | 00 | statement |
I | | number | r— T T g
L L 41 J l l I
1 byte 1 byte 2 bytes | adjective | mode/type | pointer
| code field | field | f£ield |
| I I |
SUBSCRIPTED VARIABLE: When a subscripted pemm—m $—— 4
variable 1is encountered in a source state- | arithmetic | mode/type | |
ment, an entry for a variable is made. | statement | of APPLE | p(APPLE) |
That entry is followed by two additional ¢ + + = -
intermediate text words to define the sub- | | mode/type |
scripted expression. The first word is of | = | of A | (&) |
the form: p———————————e tm————— -+ 4
| SACP | 00 | offset
t -1 { 1
r —r———— T -1 | p(subscript | p(dimension
| i | | | information) | information) |
| adjective code | mode/type | pointer | b—-—- -~ + 9
| field | field | field | | | mode/type |
| | I | |+ | of B | p(B) |
b -—t-- ¢ it ¢ ¢ 4
| saop | 00 | offset | | sace | 00 | offset |
" ¥ ¢ 1 k- -4-- 4 !
| 1 byte | 1 byte | 2 bytes |] | | p(dimension |
} -—1 L 4 | 00 | 00 | information) |
| SAOP represents the subscript arithmetic]| b—————- e S + 4
|operator, and the offset represents aj | | | internal | |
|part of the array displacement. (Refer| | | | statement |
|to Appendix E for a discussion of array] | end mark . 00 ! number |
|displacement.) | L L L J
D J 1 byte 1 byte 2 bytes

Appendix D:

Intermediate Text 95

COMMON STATEMENTS: An entry in COMMON
intermediate text represents a variakle or
an array encountered in a COMMON source
statement. Phase 12 references these
entries (serially) and assigns addresses to
them in the COMMON area. (The assignment
of addresses is discussed in detail in the
Phase 12 description.) Each entry has the
form indicated below:

== - T 1
pointer to the	length of thelnot used	
variable or	name of the	
array entry in	variable or	
the dictionary	array	
. ¥ } 1		
2 bytes	1 kyte	1 byte
[—_— L L ¥
i’ R

The first field contains the address of|
|the dictionary entry for that variakble or|
|array.
I |
|The second field contains the length of]
{the name of the variable or array in|
|EBCDIC (Extended Binary Coded Decimall
| Interchange Code) characters. The length|
|is used to determine in which chain of|
|the dictionary the variable or array is|
|to ke entered. |
i

- — -4

Each entry in the EQUIVALENCE intermedi-
ate text has the fcllowing format:

r T T]
| pointer |size |offset or 0000j
b—- —4-- 3= -
|2 kytes |2 bytes |2 bytes |
}__ L L %
|The first field is a pointer to the|
|dictionary entry £fcr the wvariable in|
|question. |

|The second field contains the size of thej
|variakle in bytes, or the size of the|
|array in bytes if the variable is dimen-|
| sioned. |

I |
|The third field contains the offset if]

Jthis particular variable is subscripted,|
Jor 0000 if the variakle is not subscript-|
| ed. |
L—— 3

Termination of an EQUIVALENCE group is
indicated by a two-byte termination indica-
tor cf the following form:

r—= 1
1 0001
L

——— -J

Termination of all COMMON intermediate
text is indicated by a two-byte termination
indicator of the form:

r 1

[0001 I

L 3
2 Lkytes

This termination indicator appears whether

or not COMMON intermediate text exists.

An Example of COMMON Text:
ment :

For the state-

COMMON (A, R, ARNONN)

the COMMON intermediate text is:

13 | T |
| p (B) | 1 |not used |
b t t 1
| p (R) | 1 |not used |
e e e 4 1 4
1) T 1l)
| p (ARNONN) | 6 |not used |
L i 8 L 4
2 bytes 1 byte 1 byte
EQUIVALENCE STATEMENTS: The EQUIVALENCE
intermediate text is constructed by Phase
10D as a series of entries (one for each

variable or array in an EQUIVALENCE group).
Phase 12 references these entries
(serially) and assigns addresses to them.
(The assignment of addresses is discussed
in detail in the Phase 12 description.)

96

2 bytes

An Example of EQUIVALENCE Text: For the

statement:
EQUIVALENCE (GRW,KEL),(RBJ(1,9),AMV(2,4))
there are two EQUIVALENCE groups:

¢ GRW,KEL
e RBJ (1,9),AMV(2,4)

where:

GRW is real

KEL is integer

RBJ is a real array dimensioned as
AMV is a real array dimensioned as

(9,9)
(9,u)

The EQUIVALENCE text is:

r T T 1
] P(GRW) | 4 | O |Detail entry for GRW
b fmmmmmie
| P(RKELY | 4 | O |Detail entry for KEL
b- fmmmmm b
| o001 | EQUIVALENCE group
| | termination indicator
t + T 1
| p(RBJY | 324 | 288 |Detail entry for RBJ
pommmmmme e
| p(AMV) | 144 | 112 |Detail entry for AMV
—_— 4 4 Il
T
| 0001 | EQUIVALENCE group
| | termination indicator
3
2 2 2
bytes bytes bytes

MODIFYING INTERMEDIATE TEXT

The intermediate text
Phases 10D and 10E, and is modified by
Phases 14, 15, and 20. This modification
prepares the intermediate text for use by
Phase 25 in the generation of machine
language instructions. The modifications
made to the intermediate text are dis-
cussed, phase by rhase, in the following
pages.

is created by

Phase 14

During Phase 14 processing, the inter-
mediate text is modified in the following

Replacement of dictionary pointers.

s Modification of I/O statement inter-

rediate text.

e NModification of computed GO TO inter-
mediate text.
s Modification of RETURN intermediate

text.

REPLACEMENT OF DICTIONARY POINTERS: Dic-

tionary pointers in the intermediate text
are replaced by information essential for
the rrocessing to Le performed by subse-
quent phases of the compiler. The follow-

ways: ing examples illustrate this modification
to intermediate text entries.
=== - b I - 1
| Input to Phase 14 | Output from Phase 1i4 |
pomm o e m oo e I
| For: | the dictionary pointer is replaced by:
L - 4 ___._.‘
r T
| variables, constants, arrays, and external| the relative address assigned by |
| functions, | Phase 12. |
| | I
| ——mmmmm—my ====my I Bt T |
| |adjective | mode/type | | | adjective | modestype | | |
| | code | of ACCESS | p(AccCEss) | | | code | of ACCESS | a(ACCESS) |
| - 1 — 1 J l L 1. [J |
| 1 byte 1 byte 2 bytes | 1 byte 1 byte 2 bytes
L — T 4
| data set reference nurbers, | the data set reference number. |
I | |
I | |
[it B T		I T T 1			
(modestype	p(3) [(modestyre	3	
S, 4	L 4 1 4				
1 byte 1 byte 2 bytes	1 byte 1 byte 2 bytes				
I					
I					
——- e , -4					
statement functions,	the SF number assigned by Phase 1b.				
I					
definition					
~ T T 1	~ T T 1				
	SF defini-	real state-			
	tion adjec-	ment func-	p(SF)		
	tive code	tion			
I L- 4 L ——d	b -1 L -1 i				
i 1 byte 1 byte 2 bytes	1 byte 1 byte 2 bytes				
	I				
use					
I r . L T R	_—-'—'——-: _______ T 1				
	adjective	real state-			
	code	ment func-	p(SF) I code	rent func-	[tive SF
		tion	N		tion
i L- 1 1 i e i i i I					
1 byte 1 kyte 2 bytes	1 byte 1 byte 2 bytes				
_ !]					
Appendix D: Intermediate Text 97

MODIFICATION OF I/O STATEMENT INTERMEDIATE

14. The intermediate text in these figures

98

TEXT: An 1/0 statement is modified in two is developed from the following I/0 state-
ways. The begin I/O intermediate text word ment:
is inserted in the intermediate text for
each element of an I/0 list. An element is WRITE (N) ((a(1,J),J=1,10),1I=1,15)
either an implied DO, or consecutive non-
subscripted variakles. Implied DOs are
detected, and implied DO and end DO inter- - T T 1
mediate text words are entered in the text. |WRITE |00 {0000 |
An end I/0 is placed at the end of the 1I/0 b= e + 9
list. | |integer |
| (|variakle |address (N) |
—_— ——— 4
i) 1
These modifications are illustrated in |end mark 1|00 | 0000 |
Figures 36 and 37, which show an indexed - + } 9
I/0 1list for a 2-dimensional array as it |implied DO| 00 | 0000 |
appears as input to and output from Phase F— + -—t |
| |integer | |
| s | variatle |address (I) |
r . T 1k — } 1
| WRITE |00 j0000 | | | inwediate DO| |
! -4 4 .| = | parameter |1
| |integer I | k + + i
| (|variable |p(N) | | |irnediate DO|
b - + 4 4 |» | parameter |15
P |00 10000 | b=-- == + 1
t + + 1 | | immediate DOJ |
| (|00 | 0000 | |+ | parameter 11 |
e $--—- } | - + } -
| |real | | |imgplied DO| 00 {0000]
| (|subscripted |p(Ra) | t— + ——— e 9
| |variable | | | | integer | |
—— + + 4 | | variable |address (J) |
| saop |00 |offset | p————————— e $—e—- 9
] 4 + -4 | |irrediate DO| |
|p(subscript) |p(dirension) | |= | parameter |1 |
F . $ —{ - fommm + 1
| |integer | | | |irrediate DO| |
|+ {variable |p(J) | |« | carameter |10 |
L N L d l, 1]
v T T h | T. . h
| | immediate DO| | | | imrediate DO| |
|= | parameter |1 | |« | parameter 1 |
L 4 4 4 }__ Y . 4 J
r L . T) . T T 1
| immediate DO| | | kegin I/0 |00 | 0000 |
. |parameter {10 | - - + 9
+ 4 | SACP |00 |Offset |
' parameter |1 | b 4 —_— -
— + | p(subscript) | p(dimension) |
) 00 |0000 - T 3 .|
I $ ———4 | | real u
| | integer | | (K¢ |subscripted |address(A)
| o [variable Ip(I) | | |variakle |
L 1 4 J L +_.__..__._.____._ ——— 4
12 T_ R T t v 1
| | immediate DO| | | end DO |00 | 0000 |
|= | parameter |1 | 3 $m— } {
} + + 4 |end DO |00 {0000 |
| |immediate DO| | - + +
|« |parameter |15 | |end 1/0 |00 } 0000
L e e 4] [[l -]
t - - + i 5 T o e 1
| |immediate DO| | | | {internal
|« | parameter |1 | |end mark |00 | statement number |
b $ t 1t L A 1
1 |00 |0000 | |* An end mark is inserted prior to the
F + + 4 | I/0 list. This allows Phase 20 to
| | | internal | | treat the I/O list as a separate state-|
|end mark |00 |statement number | | ment. |
L L 4L ——d L ——— Jd
Figure 36. Example of Input to Phase 14 Figure 37. Example of Output from Phase 14

MODIFICATION OF COMPUTED GO TO_STATEMENTS:
During the Phase 14 processing, a count of
the number of statement numbers in the
computed GO TO statement is inserted into
the intermediate text for that statement.
This simplifies the processing of this
intermediate text for the following rhases.
The intermediate text is rearranged so that
the word containing the integer variable
precedes the count word.

A computed GO TO statement such as:

GO TO (11,11,42,23,99),1
appears in the input to Phase 1l as:

r T T
| | | |
| adjective code | modes/type | pointer |
| field | field | fielad [
L —_ -1 1 ,‘

v T T
| computed GO TO | 00 | 0000]
t 1 ¥ -1
| (| statement | p(11) |
| | number | |
i 1 ¥ 1
| B | statement | p(11) |
| | number | |
p-- -4 ¥ -
| ‘ | statement | p(42) |
| | number |]
b -1 ¥ {
| . | statement | p(23) |
| | number | |
1 1 4
T T a
’ | statement | p(99) |
| number | |
b~ 3 ¥ 1
|) | 00 | 0000 |
F 1 ¥ -
' | integer | p(I) |
| variable | |
L - 4
r - + + 1
end mark	00	internal
		statement
		number
L i L —
The output of Phase 14 for the above

illustrated computed GO TO is:

- T 1
| adjective code | mode/type | pointer |
| field | field | field]
b ..._.__.I.__ | 4
v T 1
| computed GO TO | 00 | 0000 |
b= —4-- + |
| ' | integer | a(Dd |
| | variable | |
b -1 + 1
| count | 00 | 5
b-- RO $ommmmoome 4
| (| statement | p(11) |
| | number | |
b ¥ 1
| ‘ | statement | p(11) |
| | number |]
e -———4 1 -

R . | statement | p(42) |
" | number | |
b-- 4 —t 4
| p | statement | p(23) |
| | number | |
e oo 1
| . | statement | p(99) |
| | number | |
pommm oo 4= ¥ 1
|) | 00 { 0000 |
¢ -t $ {
end mark	00	internal
		statement
		number
L —— e e Lo -d

MODIFICATION OF RETURN STATEMENT INTERMEDI-
ATE TEXT: If a RETURN statement appears
within a main program, Phase 14 modifies
the adjective code field so that a STOP is
indicated. If the RETURN statement is not
within the main program, no modification is
made.

Phase 15

During Phase 15 processing, the follow-
ing intermediate text modifications are
made:
and

e Replacement of codes

mode/type codes.

adjective

e Reordering of intermediate text.

Appendix D: Intermediate Text 99

REPLACEMENT OF ADJECTIVE CODES AND
MODE/TYPE CODES: During the processing of
arithmetic expressions, Phase 15 replaces
the adjective codes (within the intermedi-
ate text entries for arithmetic
expressions) by actual machine operation
codes. Phase 15 alsc assigns registers to
the operands in arithmetic expressions
(when required); the corresponding register
numbers are inserted in the mode/type code
fields of the intermediate text that rep-
resents those expressions.

The result of the akove modification is
a transformation of the intermediate text
entries for arithmetic expressions into a
form that closely resembles the RX instruc-
tion format.

The following
replacement of

exarple indicates the
adjective codes by machine
operation codes, and the replacement of
modestype codes by registers. The simple
arithmetic staterent

PRI = +VATE - VAR

appears in the input to Phase 15 as:

r T T 1
| adjective | mode/tyge | pointer |
| code field | code field | field |
b o -4~ 1
|arithmetic |real variable |[a(PRI) |
statement

| L L !
L} T 1
|= |00 10000 |
; + 4=

|unary plus |real variable |[a(VATE)

L 1 4

r T T

|- |real variable [a(VAR)

L L — 4

r T T

|end |00 | internal
|mark | | statement

| | | number

L L 'y 4
1 byte 1 byte 2 bytes

100

The rointer field contains the address of
the resultant £field of the arithmetic
statement.

The output fror Phase 15 for this state-
ment is:

r L T 1
| adjective | mode/type | rointer |
| code field | code field | field |
p---- . ¥ 1
|arithmetic |real variakle |a(PRI) |
| statement | | |
o $ r— 1
| L |reg.#3|variable|a(VATE) |
L 4 L ———
L) + T T 'l
|s |reg.#3|variable|a(VAR) |
L 1 1]
r + T T a1
| ST |reg.#3|variable|a (PRI)

¢ ¥ R o 1
end	00	internal
mark		statement
		nunber
L -1 1]
1 kyte 1 byte 2 kytes

The first operand VATE, is loaded into

register #3. The second operand, VAR, is
subtracted from VATE. The result is stored
in the resultant field, PRI.

In addition, registers are assigned and
are inserted in the mocdes/type code field of
the following:

e Intermediate text entries for
tiation.

exponen-

e Intermediate text entries for in-line
functions, referenced subprograms, and
statement function calls.

¢ Intermediate text entries for subscript
expressions.

The following examples illustrate this
modification to the intermediate text.

Input To Phase 15

Cutput From Phase 15

- —— — —

T 1
I I
| |
| I
1 J
T 1
| For: | Phase 15 assigns: |
i } . —_—— 4
3 T]
| exponentiation, | a register to contain the result of the]
| | required library subprogram execution. |
I | |
I - T -1 e T —mey-—-y T v
[| |modes/type | L | | result| | |
| | ** |information| a(POWER) | | [*%* | 0 | reg | 2a (POWER) |
] I G L —_—d | b 1 L i 4
| 1 byte 1 byte 2 bytes | 1 byte 1 kyte 2 bytes |
L | e e e e e e e e 4
v T a
| in-line functions, | one or two registers (depending |
| | on the specific in-line function)
| | to ke used as argument registers. |
| | The register specified in the R1
| | £ield is used as the result register. |
| | |
| r———== T T v o R T 1 |
| l[in-line | [code num- | | | L | I
| | function |not used |ber of in- | | | | | not | | |
| |adj. code | |line funct.| | |Lcad |[R1 | used |a(argument) |
| } —4- T e -1 == i
			-	in-1line			code num-	
	F(not used ta(argument)			[function	R2	R1	ber of in-
				tadj. code			line funct.	
[U SR L —d	lee L1 1 -1						
1 byte 1 byte 2 bytes	1 byte 1 byte 2 bytes							
_.__.+ P d								
r h)								
sukscript expressions,	a work register (to be used by							
	Phase 20) to aid in the computa-							
	tion of the subscript expression.							
I r~ . T T] l - . T="-7 T 1 I								
	sukscript	mode/type			Isukscript		work	
ladj. code	information	Offset			adj. code	0	reg.	Offset
- i 1 i te- I § 1 J [
1 bkyte 1 byte 2 bytes	1 byte 1 byte 2 bytes							
L — 4 —— d
REORDERING OF INTERMEDIATE TEXT: Phase 15 — T T 1
reorders the intermediate text entries |adjective | mode/type | pointer |
within arithmetic exrressicns so that the | code | code | £field |
object module instructions produced by sub- +- — + 4
sequent phases are generated according to a |arithmetic]| real variable | a(DGM) |
hierarchy of operators. p— +- + 4
=] real variable | a(BCR) |
- -4-—- $ 4
| * | 00 | 0000 |
s S = wreva! -
The following example indicates this i (real variable | a(WRG) |
reordering process. p——- + -——4 4
|+ | real variable | a(WAR) |
b e ¥ 1
The statement: 1) | 00 | 0000 |
b= + + {
| end i |internal |
DGM = BCR* (WRG+WAR) |mark | 00 | statement|
| | | number |
b —— § i .
appears in the input to Phase 15 as: 1 byte 1 byte 2 bytes

Appendix D: Intermediate Text 101

The output from Phase 15 for this state-

Phase 20 optimizes the intermediate text
entries for subscript expressions. This
optimization consists of modifying portions
of existing subscript intermediate text and
creating new subscript intermediate text
for literals that are generated during the
subscript optimization process. The chan-
ges made to subscript intermediate text
will be discussed ky examining a general
subscript expression as it appears in the
input to Phase 20 and by examining the
subscript intermediate text output from
Phase 20 for this expression.

SUBSCRIPT INTERMEDIATE TEXT INPUT: The
intermediate text input to Phase 20 for a
general expression is shown in Figure 38.

SUBSCRIPT INTERMEDIATE TEXT OUTPUT: Sub-
script intermediate text output from Phase
20 depends on the previous optimization (if
any) of the subscrirt expression. Three
adjective codes are used to indicate the
different conditions that can be present in
subscript intermediate text output. These
conditions are explained in the following
paragrarhs.

102

bl T 1
ment is: | adjective code |modestyre | pointer |
| field | field | field |
T ST .
r T T 1 | adjective code | O |W |offset |
|adjective | mode/tyge | pointer | - i 1 B - .|
| code | code | field | | p(sukscript) |p(dimension) |
t t ¥ —4 - S S -4
|arithmetic]| real variable | a(DGM) | | op | R | Typela(variable) |
— $ T : 1t oty 4

|LE |register|variakle | a(WRG) | |1 byte |1 kyte |2 kytes
| i 6 |information| | b L L 4
———— e e + + 4 |Adjective code contains the adjective]
| AE |register|variable | a(WAR) | |code for a sukscripted variable portion]|
| | 6 |information| | |of text. |
p-—mm———t } 1 i | |
| ME |register|variable | a(BCR) | |0 contains a zero value. |
| | 6 |information| | | |
3 4 4 + 4 |W contains a work register assigned by|
| STE | register|variable | a(bGM) | |Phase 15. |
| | 6 |information| | |
b + -——1 + -—— |[0Of fset contains the value of the offset|
end		internal		portion of the array displacement.
mark	00	statement		
		number		p(subscript) contains the pointer to sub-
L 1 L 4	script information in the overflow tablej			
1 byte 1 byte 2 bytes	for this expression.			
}p(dimension) ccntains the pointer toj				
dimension information in the overflow				

Phase 20 |takle for this expression.

I

|OP contains
| by Phase 15.
|

|R contains a register assigned by Phase
|15.

|

|Tyre contains the residual (since it is|
|no longer necessary) type information for|
|the subscripted variakle. |

the operation code assigned

I
fa(variakle) contains the address of the|
| subscrirted variable. |
L _— J
Figure 38. Sukscript Intermediate Text

Input Format

SAOP (Sukscript Arithmetic Operator) Adijec-

tive Code: This code indicates that a

subscript expression has not been previous-

ly ortimized, and that an offset 1literal
was not generated for the value resulting
from the addition of the offset portion of
the array displacement to the subscripted
variable address disglacement. Subscript
text output associated with an SAOP adjec~
tive code is shown in Figure 39.

|ing the form of the intermediate sub-

|script text.
|

[N contains the number of dimensions of
|the subscripted variatle.

13 T T 1
| adjective code |mode/type| pointer |
| field | field | field [
I —— e v 1
| SAQP | N | W |offset
| et :
| p(subscript) |a(Cl*L) |
L KN 4
r + 4
| a(Cc2#D1+L) |a(C3*D1*D2+L) |
; . !
| OP | R | X |a(variakle) |
1 L 4 gl 4
1} T T A
|1 byte |1 byte |2 bytes |
L L1 i d
r a1
| SAOP contains an adjective code designat-|
[
I
[
|
|
|

|

la(ci*L), a(C2#D1#*L), and a(C3#*D1#*D2#*L)|
|contain the addresses of +the literals|
|that combine to fcrm the CDL portion (see|
|Appendix E) of the array displacement. Nj
|determines which addresses must appear. |
|For example, if N is 1, only a(Cl#*L)|
|appears. (If the first literal, Cl*L, is|
|a power of 2, that power appears instead|
|of the address of that literal.) i
| |
|X contains the register assigned to the|
| subscript expression for computation by]|

| Phase 20. |

I

|Note: All other entries are as defined|

|in Figure 38. |

L J

Figure 39. Subscript Intermediate Text
Output From Phase 20 -- SAOP

Adjective Code

XOP (Offset Literal) Adjective Code: This
code indicates that the subscript expres-
sion has not Leen rpreviously assigned a
register and that an offset 1literal was
generated for the value resulting from the
addition of the offset portion of the array
displacement to the displacement of the
subscripted variakle address. The sub-
script intermediate text output associated
with an XOP adjective code is shown in
Figure 40.

AOP (Arithmetic Operator Without Subscript)

- T T = -
| adjective code |mode/type| pointer |
| field | fielda | field |
——= o=yt -4
| XCF | N | W |ja(generated |
| | | | literal) |
¢ bty 1
| p(sukscript) |a(C1l*L) |
p-—-- 1 -
| a(C2*D1*L) |a(C3*D1*D2*L) |
F s , 1
| oP | R | X |a(variable) |
—— P I L 4 4
T A

|1 byte |1 kyte |2 bytes
Y — 1 4

| XOP contains an adjective code designat-|
|ing the form of the subscript intermedi-|
|ate text. |
| |
|a(generated literal) contains the address|
|of the offset literal generated by Phase|
|20. |
| |
|Note: All other entries are as defined in|
|Figures 38 and 39. |

J— J

Subscript

|0 contains a zero value.
|

|B contains an indicator. A hexadecimal 0|
{indicates that the actual offset is in|
|the offset field. A hexadecimal F indi-|
|cates that the address of the generated]|
|offset 1literal appears in the offset|
| field.

Figure 40. Intermediate Text
Output from Phase 20 -- XOP
Adjective Code
r~=- . A T T 1
| adjective code |mode/type] pointer |
| field | field | field |
-~ e B 1
| AOP | O | B |offset |
b fo———t--——t -4
| OP | R | X Ja(variable) |
L 4 1
T T -'I
|1 kyte 1 byte |2 bytes
b-- === 1 1
| AOP contains an adjective code designat-|
|ling the form of subscript intermediatej
|text. |
|
|
[

|Note: All other entries are as in Figures

Adjective Code: This code indicates that
the subscript expression has previously
been assigned a register. The subscript

intermediate text output associated with an
AOP adjective code is shown in Figure 41.

|38 and 39.
| —

Figure u41.

TR S

Intermediate Text
20 -- AOP

Subscript
Output from Phase
Adjective Code

Appendix D: Intermediate Text 103

APPENDIX E: ARRAY DISPLACEMENT COMPUTATION

Array displacement is the distance
between the first element in an array and
a specified element to be referenced from
the array. To increase compilation effi-
ciency, the array displacement is divided
into portions and computed during differ-
ent phases. To tie these separate compu-
tations into one coordinated presentation,
the method of array displacement computa-
tion is developed in the following text.

Before discussing the actual computa-
tion, it is desirable to understand how an
element 1is referenced in a 1-, 2-, and
3-dimensional array.

ONE DIMENSION

Assume a 1-dimensional array of five
elements, expressed as A(5). To reference
any given element in this array, the only

factor to be considered is the length of
each element. The third element, for
example, is two element lengths from the

beginning of the array.

TWO DIMENSIONS

For a 2-dimensional array, A(3,2), an
element can no longer be thought of as a
single array element. Instead, each ele-
ment in a 2-dimensional array consists of
the number of array elements designated by
the first number in the subscript expres-

sion used to dimension the array. For
reference, an element in a 2-dimensional
array will be called a dimension part.

For example, in the array of A(3,2):

A(1,1) A(2,1) 2A(3,1)-y - Dimension Part

~ Dimension Part

the first dimension part consists of
A(1,1), A(2,1), and A(3,1). Note that the
number of elements in each dimension part
is the same as the first number (3) in the
subscript expression used to dimension

array A.

Dimension parts are consistent in
length. Length is determined by multiply-

104

ing the number of elements in a dimension
part by the array element 1length. The
resulting value is considered a dimension
factor for the following discussion. (If
the element 1length in array A is 4, the
dimension factor is 3 +times 4, or 12.)
The dimension factor plays a significant
role in referencing a specific element in
a 2-dimensional array.

Before discussing how a specified ele-
ment is referenced, the hexadecimal number
schenre used to address an array element
must be considered. The first digit of
the hexadecimal number scheme (as used in
the ccmpiler) is zero. The 16 hexadecimal
digits are:

0,1,2,3,4,5,6,7,8,9,A,8B,C,D,E, and F.

Consider that the element A(1,2) is to
be referenced fromr the array dimensioned
as A(3,2). Observation shows one dimen-
sion part must be bypassed in order to

reference the specified element. The com-
putation to reference this element
requires the values in the subscript
expression (1,2). Each number must be

decremented by 1 to compensate for the
zero-addressing scheme used by the compil-
er. This leaves an expression of (0,1).
The second number (1) dictates the number
of dirension parts to ke bypassed in order
to arrive at the dimension part in which
the srecified element is 1located. Once

this dimension rpart is found, the first
numker (0) indicates the number of ele-
ments in that dimension part that must be

bypassed to reference the ele-

ment.

specified

THREE DIMENSIONS

The same reasoning can be projected
into a 3-dimensional array. For a
3-dimensional array, A(3,2,3), an element
can neither be considered a single array
elexrent, nor thought of as a dimension
part. Each element in a 3-dimensional
array consists of the number of dJdimension
parts designated by the second number in
the subscript expression used to dimension
the array. For reference, therefore, an
element in a 3+dimensional array will be
called a dimension section. For example,
in the array A(3,2,3):

Dimension Section part, and one array element must be
A(1,1,1) A(2,1,1) A(3,1,1)y - Dim.Part bypassed in order to cbtain the specified
| elerent. The computation to reference

r 1 this element requires the values in the
Lwa(1,2,1) A(2,2,1) A(3,2,1)y - Dim.Part subscript expression (2,2,3). Each number
| must ke decremented by 1 to compensate for

r 4 the zero-addressing scheme used by the
| compiler. This leaves an expression of
|Dimension Section (1,1,2). The third number (2) indicates
L>A(1,1,2) A(2,1,2) A(3,1,2)4 - Dim.Part the number of dimension sections to bypass

| in order to arrive at the dimension sec-
r - - —— -—=d tion in which the specified element is
L>A(1,2,2) A(2,2,2) A(3,2,2)3 - Dim.Part located. The second number (1) indicates

| the numker of dimension parts, within the
r————— J referenced dimension section, that must be
| bypassed to arrive at the dimension part
|Dimension Section in which the specified element is located.
t>a(1,1,3) A(2,1,3) A(3,1,3)7 - Dim.Part Once this dimension part is found, the

| first nurber (1) indicates the number of
r ——— 4 elements in that dimension part that must
L>a(1,2,3) A(2,2,3) A(3,2,3) - Dim.Part be kyrassed to reference the specified

element. The preceding example is illus-
trated in Figure U42.

the first dimension section consists of This concept of how a specified element
the dimension part beginning with A is referenced from an array is generalized
(1,1,1) and the dimension part beginning in the fcllowing text.

with A(1,2,D). In this example, we have
three dimension sections, as specified by
the third number in the subscript
expression used to dimension the array.

Again, the 1length of the dimension General Subkscript Form
sections is consistent. The length, in
this case, is determined by multiplying

the number of elements in a dimension part The general subscript form
by the number of dimension parts by the (C1*V1+J1,C2%V2+J2,C3%V3+J3) refers to
array element length. The resulting value some array, A, with dimensions (D1, D2,
is considered a dimension multiplier for D3). The required numker of elements is
the following discussion. (If the element specified by (C1l#V1+J1); (C2*V2+J2) *D1;
length in array A is 4, the dimension and (C3*V3+J3) *D1*D2, representing the
multiplier is 3 times 2 times 4 or 24.) first, second, and third subscript param-

eters multiplied by the pertinent dimen-
sion information for each parameter.
consider that the element A (2,2,3) is Therefore, the required number of elements
to be referenced from the array dimen- for the general sukscript form is:
sioned as A (3,2,3). Observation shows
two dimension sections, one dimension
(C1L*V1+J1) + (C2#%V2+J2) *D1+ (C3*V3+J3) *D1%*D2

T 1
| A(2,2,3) |
| | I
| | Zero-addressing adjustment |
| v |
| A(1,1,2) |
I P |
| [l))) |
| | | t---> 2 dimension sections |
| (B Must be bypassed to |
| | t———— > 1 dimension part |
| { obtain specified element |
| e > 1 array element |
L e e e e e e e e e e e e e e e e 2 e e o e o e e e e o e e e e o e e - —J

Figure 42. Referencing a Specified Element in Array

Appendix E: Array Displacement Computation 105

Array Displacement

The array displacement for a subscript
expression, specifically stated, is the
required number of array elements multi-
plied by the array element length. There-
fore, the array displacement is:

[((C1%V1+J1)+(C2%V2+4J2) *D1+
(C3%V3+J3)*D1#D2) 1 *L

Because of the zero-addressing scheme, the
displacement is:

(C1*V1+J1-1) *L+(C2*%V2+J2-1) *D1*L+
(C3#V3+J3-1) *D1#*D2*L

This expression can be rearranged as:

(C1*V1*L+C2%V2*D1*L+C3%V3*D1*D2*L) +
[(J1-1) *L+ (J2-1) *D1*L+ (J3-1) *D1*D2*L)]

The first portion of the array dis-
placement is referred to as the CDL
(constant, dimension, length) portion and
is derived from:

Cl*V1*L+C2*%V2+D1*L+C3*V3*D1*D2*L

Vi, V2, and V3 are the variables of the
expression and cannot be computed until
the execution of the ckject module. This
leaves the following compcnents, which
constitute the CDL rortion of the dis-
placement:

C1#L is the first compcnent,
C2*%D1*L is the second component, and
C3*D1*#D2*L is the third component.

The second fportion of the array dis-
placement:

(J1-1) %L+ (J2-1) *D1*L+ (J3-1) *D1*D2*L

106

is known as the offset portion and is
calculated by Phase 10E. The offset is
calculated using the following formulas
for 1-, 2-, and 3- dimensional arrays.

OFFSET=[J1-1]*Length
1-dimensional

OFFSET=[(J1-1)+(J2-1) *D1]

*Length 2-dimensional
OFFSET=[(J1-1)+(J2-1) *D1
+(J33-1) *D1*D2]*Length 3~-dimensional

This calculation 1is performed and the
result is entered in the offset field of
the intermediate text entry for that sub-
scrirt. Refer to Appendix D for the
intermediate text format.

The CDL components are calculated dur-
ing Phase 20. If the CDL component is a
power of 2, that power replaces the offset
field in the intermediate text entry. If
the CDL component is not a power of 2, a
literal is formed and assigned an address
(by Phase 20). The address of the literal
is then entered in the offset field of the
intermediate text entry. Refer to Appen-
dix D for the intermediate text form and
content.

Phase 25 corbines the CDL components,
the variables, and the offset to produce
the array displacement. The procedure is
as follows: the first component of the CDL
multiplied by the first variable of the
subscript expression (C1#L)*V1l; plus the
second component of the CDL multiplied by
the second variable of the subscript
expression (C2*D1*L)*V2, plus the third
component of the CDL multiplied by the
third variable of the subscript expression
(C3*D1*D2*#L) *V3; rlus the offset:

(J1-1)*L+(J2-1) *D1*L+ (J3~1) *D1*D2+*L.

APPENDIX F:

TABLES USED BY THE OBJECT MODULE

The following takles are used Ly the
object module to execute the instructions
generated by the compiler:

e Branch list takle for referenced
statement numbers
e Branch list takle for SF expansions

and DO statements

¢ Argument list table for subprogram and
SF calls

e Base value table

The following discussions describe the
use and format of each table.

BRANCH LIST TABLE FOR REFERENCED STATEMENT
NUMBERS

Phase 12 allocates storage for the
branch list table for referenced statement
numbers and assigns a relative position
(relative to the start of the kbranch
table) to each executable statement that
is referenced by other statements. Phase
25 inserts the relative addresses, for
these statements, into the positions dic-
tated by Phase 12. The table is used, at
object time, by the instructions generated
to branch to executable statements.

BRANCH LIST TABLE FOR SF EXPANSIONS AND DO
STATEMENTS

Phase 20 allocates storage for the
branch list table for SF (statement
function) expansicns and DO statements.

During Phase 25 processing, the relative
addresses for the first executable instruc-
tions in the SF expansions and DO loops are
inserted intc locaticns relative to the
start of the kranch takle. The locations
for the SF expansions were determined Ly
Phase 14; the 1locations for the DO loops
are determined by Phase 25. The table is
used, at object time, either by the
instructions generated to reference SF
expansions or by the instructions generated
to contreol the iteration of DO lcops.

Each entry in the table is either the
address of the first instruction in an SF
expansion or the address of the second
instruction in a DO 1locop. (The first
instruction of the DO loop initializes the
DO counter.) The format and organization
of the kranch list takle for SF expansions
and DO statements is illustrated in Figure
44,

.
|address of first instruction in SF expan- |
|sicn 1 |
b= -
|address of first instruction in SF expan-|
|sion 2 |

Each entry in the table is the address t -— 4
of a referenced statement number. The] . |
format of the branch list table for ref- | . |
erenced statement numbers is illustrated | . |
in Figure 43. t ——— 4

{address of first instruction in SF expan-|

|sion N |
r - = 1 }“ - 1
|address of first referenced statement] |address of second instruction in DO loop|
| number | |1 |
b it {
|address of second referenced statement| |address of second instruction in DO loop|
| number | |2 |
- { - 1
| . I . |
| . Lo . |
| . I . |
b - - 1
|address of last referenced statement num-| |address of second instruction in DO loop|
| bex | |M
L J [-4

4 bytes 4 bytes

Figure 43. Format of Branch List Table for Figure 44. Format of Branch List Table for

Referenced Statement Numkers

Appendix F:

SF Exransions and DO Loops

Tables Used by the Object Module 107

All SF definitions must appear prior to
the executakle statements (this includes DO
statements) in a source module. Therefore,
Phase 25 encounters all the SF adjective
codes prior to the first DO statement
adjective code. This accounts for the
placement of all SF expansion addresses
into the branch table kefore the first DO
loop address.

ARGUMENT LIST TABLE FOR SUBPROGRAM AND SF
CALLS

Phase 20 allocates storage for the argu-
ment list table for the arguments of sub-
program and SF calls. During Phase 20
processing, the relative addresses of the

T

¢
|first argument of first subprogram or SF|
|reference encountered |

b -—- - ~{
| . |
| . |
] . |
F {
|last argument of first subprogram or SF|
| reference encountered |
b -—- {
|first argument of second sukprogram or SF|
|reference encountered |
— !
| . |
| . |
| . I
b= - —=-- 1
|last argument of second subprogram or SF|
|reference encountered |
p--=---- 1
. |

. I

. |

8|

I

first argument of last subprogram or SF
reference encountered

e — e e o e g e e e

|last argument of last subprogram or SF
|reference encountered
L

NS S\ T

4 bytes

Figure 45. Format of Argument List Table

for Subprogram and SF Calls

108

above arguments are inserted into the argu-
ment 1list table. The starting address of
the first argurent of each argument list is
passed as part of the intermediate text to
Phase 25 (the total nurbexr of SFs is passed
in the communication area).

Each entry in the argument list table is
either the address of an argument used in a
subrrogram or the address of an argument
used in an SF. Entries are wade in the

takle as Phase 20 encounters each subpro-
gram or SF reference. The format and
organization of the argument list table is

illustrated in Figure 45.

BASE VALUE TABILE

The base value table is generated by the
varicus prhases of the compiler as base
registers are required by the okject cod-
ing. The table is assembled in its final
form by Phase 25. The compiler—-generated
instructions that load base registers, at
object time, use +the kase value table in

order to obtain the rroper base register
values.
Figure 46 illustrates the format and

organization of the base value takle.

r
|value placed in the first Lase register|
|used to obtain data in COMMON
b—-

e

|value placed in the last kase register
|used to obtain data in COMMON
1

b ——
|value placed in the first base register
|used to obtain data in the okject module

'.___ —_——

L TSI SIS SEA SEIIRApLr SIS S,

oy . e

|value placed in the last base register
|used to obtain data in the okject module

b

4 bytes

Figure 46. Format of Base Value Table

The object module, compiled frcm the
FORTRAN source module, must be first pro-
cessed by the 1linkage editor prior to
execution on the IBM System/360. The lin-
kage editor must comkine certain FORTRAN
library subprograms with the object module
to form an executakle 1load module. They
are:

I/0

¢ THCFCOME (Object~time source

statement processor).
FORTRAN

e THCFIOSH (Okject-time I/0

data management interface).

e THCIBERR (Object-time source statement
€rror processor).

IHCFCOME

IHCFCOME, a member of the FORTRAN system
library (SYS1.FORTLIB), performs object-
time implementation of the following source
statements:

e READ and WRITE.

» BACKSPACE, REWIND, and END FILE (I/0
device manipulation). -

¢ STOP and PAUSE (write to operator).

In addition, IHCFCOME processes object-
time errors detected by various FORTRAN
library subprograms, processes arithmetic-
type program interruptions, and terminates
load-module execution. (The load module is
produced by the linkage editor, and
contains the object module produced by the
compiler, IHCFCOME, IHCFIOSH, IHCIBERR, and
any required subrrogrars.)

All 1linkages from the load module to
IHCFCOME are compiler generated. Each time
one of the above-mentioned source state-
ments is encountered during compilation, an
appropriate calling sequence to IHCFCOME is
generated and is included as part of the
load module. At okject-time, these calls
are executed, and control is passed to
IHCFCOME to perform the specified opera-
tion.

The routines of THCFCOME are divided
into the following categories:

Appendix G:

APPENDIX G: OBJECT-TIME LIBRARY SUBPROGRAMS

e READ/WRITE routines.

¢ I/0 device manipulation routines.
e Write-to-orerator routines.

e Utility routines.

Charts 13, 14, and 15 illustrate the
overall 1logic and the relationship among
the rcutines of IHCFCOME. Table 26, the

routine directory, 1lists the routines and

their functions.

Note: TIHCFCOME itself does not perform the
actual reading from or writing onto data
sets, or I/0 device manipulation. It sub-
mits requests for such operations to an 1/0
interface module IHCFIOSH (that is, FIOCS#)
by means of an implied external reference.
IHCFIOSH, in turn, interprets the requests
and submits ther tc the appropriate BSAM
(basic sequential access method) routines
for execution.

READ/WRITE Routines

For the implementation of READ and WRITE
statements, IHCFCOME ccnsists of the fol-
lowing three sections:

® An opening secticn, which initializes
data sets for reading or writing.

e An I/0 list section, which transfers
data from an input buffer to the I/0
list items or from the I/0 1list items
to an output buffer.

* A closing section, which terminates the
I/0 operation.

Within the discussion of each section, a
READ/WRITE operation is treated in one of
two ways:

* As a READ/WRITE operation requiring a
format.

¢ As a READ/WRITE operation not requiring
a format.

OPENING SECTION: The compiler generates a
calling sequence to one of four entry
points in the opening section of IHCFCOME
each time it encounters a READ or WRITE
statement in the FORTRAN source module.
These entry points correspond to the opera-
tions of READ or WRITE, requiring or not
requiring a format.

Object-Time Library Subprograms 109

READ/WRITE Requiring a Format: If the
operation is a READ requiring a format, the
opening section passes control to IHCFIOSH
to initialize the unit number specified in
the READ statement for reading. (The unit
number is passed, as an argument, to the
opening section via the calling sequence.)
IHCFIOSH: (1) opens the data control block
(via the OPEN macro-instruction) for the
specified data set if it was not previously
opened, and (2) reads a record (via the
READ macro-instruction) containing data for
the I/0 list items into an I/O buffer that
was obtained when the data control block
was opened. TIHCFIOSH then returns control
to the opening section of IHCFCOME. The
address of the buffer and the length of the
record read are passed to IHCFCOME by
IHCFIOSH. These values are saved for the
I7/0 1list section of IHCFCOME. The opening
section then passes control to a portion of
IHCFCOME that scans the FORMAT statement
specified in the READ statement. (The
address of the FORMAT statement is rpassed,
as an argument, to the opening section via
the calling sequence.) The first format
code (either a control or conversion type)
is then obtained.

For control type codes (e.g., an H
format code or a group count), an I/O list
item is not required. Control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated

until either the end of the FORMAT state-
ment or the first conversion code is
encountered.

For conversion type codes (e.g., an I
format code), an I/0 list item is required.
Upon the first encounter of a conversion
code in the scan of the FORMAT statement,
the opening section completes its process-
ing of a READ requiring a format and
returns control to the next sequential
instruction within the load module.

The action taken by IHCFCOME when the
various format codes are encountered is
jllustrated in Table 21.

If the operation is a WRITE requiring a
format, the opening section passes control
to IHCFIOSH to initialize the wunit number
specified in the WRITE statement for writ-
ing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) IHCFIOSH opens the data
control block (via the OPEN
macro-instruction) for the specified data
set if it was not previously opened.
IHCFIOSH +then returns control to the open-

110

ing section of IHCFCOME. The address of an
I/0 kuffer that was oktained when the data
contrcl block was opened is saved for the
I/0 list section of IHCFCOME. Subsequent
opening section crprocessing, starting with
the scan of the FORMAT statement, 1is the
same as that described for a READ statement
requiring a format.

READ/WRITE Not Requiring a Format: If the

operation is a READ or WRITE not requiring
a format, the orening section processing
excert for the scan of the FORMAT statement
is the same as that described for a READ or
WRITE requiring a format. (For a READ or
WRITE not requiring a format, there is no
FORMAT statement.)

I/0 LIST SECTICON: The compiler generates a
calling sequence to one of four entry
points in the I/0 list section of IHCFCOME
each time it encounters an I/O 1list item
associated with the READ or WRITE statement
under consideration. These entry points
correspond to a variakle or an array list
item for a READ and WRITE, requiring or not
requiring a format. The I/O list section
performs the actual transfer of data from:
(1) an input kuffer to the 1list items if a
READ statement is being implemented, or (2)
the list items to an output buffer if a
WRITE statement is being implemented. 1In
the case of a READ or WRITE statement
requiring a format, the data must be con-
verted before it is transferred.

READ/WRITE Requiring a Format: In process-
ing a list iter for a READ requiring a
format, the I/O list section passes control
to the conversion routine associated with
the ccnversion code for the 1list item.
(The arpropriate conversion routine is det-
ermined by the rportion of IHCFCOME that
scans the FORMAT statement associated with

the READ statement. The selection of the
conversion routine derends on the conver-
sion code of the list item being

processed.) The conversion routine obtains
data from an input buffer and converts the
data to the form dictated by the conversion
code. The converted data 1is then moved
into the main storage address assigned to
the list item.

In general, after a conversion routine
has processed a 1list item, the I/O list
section determines if that routine can be
arplied to the next 1list item or array
element (if an array is being processed).
The I/0 list section examines a field count
that indicates the number of times a parti-
cular conversion code is to be applied to
successive list items or successive ele-
ments of an array.

Takle 21.

IHCFCOME FORMAT Code Processing

.
oo

T T T T - == et - b
	[
FORMAT Code	Description	Type	Corresponding Action Upcn Ccde by IHCFCOME
[
b ¥ ¥ e !			
	beginning of	control	Save 1location for crossible repetition of the
	statement		format codes; clear counters.
	[
		, _	
In(group count jcontrol [Ssave n and location of 1left parenthesis for		
			possible repetition of the format codes in the
			group.]
	[
	[o o	
In	field count	control	Save n for repetition of format code which]
			follows.
[[
			,
nP	scaling factor	control	Save n for use by F, E, and D conversions.
		!	
			N o
Tn	column reset	control	Reset current position within record to nthj
			column or kyte.
]			
			, _
nX	skip or klank	control	Skip n characters of an input record or insert n
		blanks in an output record.	
*text' or nH	literal data control	Move n characters fror an input record to the	
I I [

I |

| |

| |

| |

W, D
£ s £

-

N

e P —

conversicns

group end

record end

end of
statement

!
|
|
|
|
!
|
!
|
!
|
|
|
!
|

control

control

control

|
|
I
!
I
|
|
|
I
|
I
I
I
I
I
I
|
|
|
|
|
|
I
!
|
I
|
I
|
|
I
I
I
[
|
|
!

| FORMAT statement, o¢cr n characters from the
| FORMAT statement to an cutput record.

|

conversion|Exit to the load module to return control to]|

|subroutine FIOLF or FIOAF. Using information]
|passed to the I/0 list section, the address and|
|length of the current 1list item are obtained|
|and passed to the proper conversion routine|
|together with the current position in the I/0|
buffer, the scale factor, and the values of w|
and d. Upon return from the conversion routine |
the current field count is tested. If it is|
greater than 1, another exit is made tc the load|
module to oktain the address of the next 1list]|
item. |

I

|

Test group count. If greater than 1, repeat|
|format codes in group; otherwise continue to]
|process FORMAT statement from current position.|

| Input or output one record via IHCFIOSH and
| READ/WRITE macro-instruction.

|If no I/0 list items remain to be transmitted, |
|return control to the load module to link to the|
|closing section; if list items remain, input or|
|output one record using IHCFIOSH and READ/WRITE|
|macro-instruction. Rereat format codes from|

|last left rarenthesis. |
A]

Appendix G: Object-Time Library Subprograms 111

If the conversicn code is to be repeated
and if the previous list item was a vari-
able, the I/O list section returns control
to the load module. The load module again
branches to the I/0 list section and pass-
es, as an argument, the main storage
address assigned to the next list item.

The conversion routines that processed
the previous list item is then given con-
trol. This procedure is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/0
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element is then given control.
This procedure is repeated until either all
the array elements associated with a speci-
fic conversion code are processed or the

input data for the READ statement 1is
exhausted.
If the conversion code 1is not to be

repeated, control is passed to the scan
portion of IHCFCOME to continue the scan of
the FORMAT statement. If the scan gortion
determines that a group of conversion codes
is to be repeated, the conversion routines
corresponding to those codes are applied to
the next portion of the input data. This
procedure is repeated until either the
group count is exhausted or the input data
for the READ statement is exhausted.

If a group of conversion codes is not to
be repeated and if the end of the FORMAT
statement is not encountered, the next
format code 1is obtained. For a control
type code, control is passed to the asso-
ciated control routine to perform the indi-~
cated operation. For a conversion type
code, control is returned to the load
module if the previous 1list item was a
variable. The load module again branches
to the I/0 l1list section and rasses, as an
argument, the main storage address assigned
to the next list item. Control is then
passed to the conversion routine associated
with the new conversion code. The conver-
sion routine then processes the data for
this 1list item. If the data that was just
converted was placed into an element of an
array and if the entire array has not been
filled, the I/O list section computes the
main storage address of the next element in
the array and passes control to the conver-
sion routine associated with the new con-
version code. The conversion routine then

112

processes the data for this array element.
Subsequent I/O list processing for a READ
requiring a format groceeds at the point
where the field count is examined.

If the scan portion encounters the end
of the FORMAT statement and if all the list
items are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the
calling sequence to IHCFCOME) branches to
the closing section. If all the list items
are not satisfied, control is passed to
JIHCFIOSH to read (via the READ
macro-instruction) the next input record.
The conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

If the operation is a WRITE requiring a
format, the I/O list section processing is
similar to that for a READ requiring a
format. The wmain difference 1is that the
conversicn routines obtain data from the
main storage addresses assigned to the list
items rather than frcr an input buffer.
The converted data is then transferred to
an ocutput buffer. If all the 1list items

have not been converted and transferred
prior to the encounter of the end-of-the
FORMAT statement, control is passed to
IHCFIOSH. IHCFIOSH writes (via the WRITE

macrc-instruction) the contents of the cur-
rent output Ltuffer onto the output data
set. The conversion codes starting from
the last left parenthesis are then repeated
for the remaining list items.

READ/WRITE Not Requiring a Format: In
processing a 1list item for a READ not
requiring a format, the I/O list section

must know the main storage address assigned
to the list item and the size of the 1list
iter. Their values are passed, as argu-
ments, via the calling sequence to the 1I/0
list section. The list item may be either
a variable or an array. In either case,
the numker of bytes specified by the size
of the list item is moved £from the input
buffer to the main storage address assigned
to the 1list item. The I/0 list section
then returns control to the 1load module.
The load module again branches to the I1/0
list section and passes, as arguments, the
main storage address assigned to the next
list item and the size of the 1list item.
The I/O 1l1list section moves the number of
bytes specified by the size of the 1list
item into the main storage address assigned
to this 1list item. This procedure is
repeated either until all the 1list items
are satisfied or wuntil the input data is
exhausted. Control is then returned to the
load rodule.

If the operation is a WRITE not requir-
ing a format, the I/O list section process-
ing is similar tc that described for a READ
not requiring a format. The main differ-
ence is that the data is obtained from the
main storage addresses assigned to the list
items and is then moved to an output
buffer.

CLOSING SFCTION: The compiler generates a
calling sequence to one cf two entry points
in the closing section of IHCFCOME each
time it encounters the end of a READ or
WRITE statement 1in the FORTRAN source
module. The entry pcints correspond to the
operations of READ and WRITE, requiring or
not requiring a format.

READ/WRITE Requiring a Format: If the
operation is a READ requiring a format, the

Exarples of IHCFCOME READ/WRITE Statement
Processing

The following examples illustrate the
opening section, I/C 1list section, and
closing secticn fprocessing performed by

IHCFCCME for the operations of READ and
WRITE, requiring or not requiring a format.

READ REQUIRING A FORMAT:
performed by IHCFCOME for
READ statement and FORMAT
illustrated in Table 22.

The processing
the following
statement is

READ (1,2) A,B,C
2 FORMAT (3F12.6)

closing section simply returns control to Takle 22. IHACFCOME Processing for a READ
the load rodule to continue load module Requiring a Format
execution. If the operation 1is a WRITE r——- T - —-——-1
requiring a format, the closing section |Opening |1. Receives control from load |
branches to IHCFIOSH. IHCFIOSH writes (via | Section | rodule and kranches to|
the WRITE wmacro-instruction) the contents | | IHECFIOSH to initialize dataj
of the current I/0 buffer (the final | | set for reading. |
record) onto the output data set. IHCFIOSH | | |
then returns contrcl to the closing sec- | |2. Passes control to scan por-|
tion. The c¢losing section, in turn, | | tion of IHCFCOME.
returns control to the load module to | | |
continue load module execution. | |3. Returns control to load|
| | rnodule. |
¢ o ms === {
READ/WRITE Not Requiring a Format: If the |I70 List}l. Receives control from load |
operation is a READ not requiring a format, | Section | rodule, converts input datal
the <c¢losing section kranches to IHCFIOSH. | | for A, and moves converted|
IHCFIOSH reads (via the READ | | data to A. |
macro-instruction) successive records until | | |
the end of the logical record being read is | |2. Returns control to load|
encountered. (A FORTRAN logical record | | nodule. |
consists of all the records necessary to | | |
contain the I/0 1list items for a WRITE | |3. Receives control from load|
statement not requiring a format.) When | | nodule, converts input data|
IHCFIOSH recognizes the end-of-logical- | | for B, and moves converted|
record indicator, control is returned to | | data to B. |
the closing secticn. The closing section, | | |
in turn, returns control to the load module | |4. Returns control to load|
to continue load module execution. | | rodule. |
| | |
| |S. Receives control from load|
If the operation is a WRITE not requir- | | module, converts input data]
ing a format, the closing section inserts: |] for C, and moves converted|
(1) the record count (i.e., the numker of | | data to C. |
records in the 1logical record) into the | | |
control word of the I/0 buffer to be | |6. Returns control to 1load|
written, and (2) an end-of-logical-record | | module. |
indicator into the last record of the 1I/0 - +—- 4
buffer Leing written. The closing section |Closing |1. Receives control from load |
then branches to IHCFIOSH. IHCFIOSH writes | Section | nodule and closes out I/0|
(via the WRITE macro-instruction) the con- | | operation.
tents of this I/0 kuffer onto the output | | i
data set. IHCFIOSH then returns control to | |2. Returns control to load|
the closing section. The closing section, | | module to continue loadj
in turn, returns control to the load module | | rodule execution. |
to continue load module exectuion. Lee L —-— J
Appendix G: Okject~Time Library Subprograms 113

WRITE REQUIRING A FORMAT: The processing
performed by IHCFCOME for the following
WRITE statement and FORMAT statement is
illustrated in Table 23.

WRITE (3,2) (D(I),I=1,3)
2 FORMAT (3F12.6)

Table 23. IHCFCOME Prccessing for a WRITE
Requiring a Format
r I T h)
|Opening |1. Receives control from load |
|Section | module and branches to|
| | IHCFIOSH to initialize data]
| | set for writing. |
| I |
| |2. Passes control to scan por-|
| | tion of IHCFCOME. |
I | |
| |3. Returns control to load|
| | module. |
t 1 {
|I70 List]|l. Receives control from load |
|Section | module, converts D(1), and}
| | moves D(1) to output kuffer.|
| ! |
| 2. Returrns control to load|
| | module.
| | |
| |3. Receives control from load]
| | module, converts D(2), and|
| | moves D(2) to output buffer. |
| | I
	4. Returns control to load
	nmodule.
	5. Receives control from load
	module, converts D(3), and
	moves D(3) to output kuffer.
I	
	6. Returns control to load
	module.
prom—-=-—t .	
Closing	1. Receives control from load
Section	module and branches to
	IHCFIOSH to write contents
	of output buffer.
	2. Returns control to load
	module to continue load
	module execution.
L PR T —_— 4

114

READ NOT RECUIRING A FORMAT: The process-

ing rerformed by IHCFCOME for the following
READ statement is illustrated in Table 24.

READ (5) X,Y,Z

Table 24. IHCFCOME Processing for a READ

Not Reguiring a Format

r—= T
|Opening |1. Receives control from lcad |

=TT/

| section | rodule and kranches to|
| | IHCFIOSH to initialize data]
	set for reading.
	2. Returns control to load
	rodule.
b 1	
I70 List	1. Receives control from locad
Section mcdule and moves input data	
P	
	to X.
	2. Returns control to load
	nodule.
	I
{3. Receives control from load	
	rodule and moves input data
	to Y.
[I	
	4. Returns control to loadj
	nocdule.
I [
	5. Receives control from load
	rodule and moves input data]
	to Z.
	6. Returns control to 1load
rodule.	
I H—— I	
[Clecsing	1. Receives control from load
Section	rodule and kranches to
	IHCFIOSH to read successivej
	records until the end-of-
	logical-record indicator is
	encountered.
I	
	2. Returns control to load
	rodule to continue load
	module execution.
I i —_— i}	

WRITE NOT REQUIRING A FORMAT: The process-
ing performed by IHCFCOME for the following
WRITE statement is illustrated in Table 25.

WRITE (6) (W(J),J=1,10)

Table 25. IHCFCOME Processing for a WRITE

Not Requiring a Format

r T 1
|Opening |1. Receives control from load |
|Section | module and branches to|
| | IHCFIOSH to initialize data]
| | for writing. |
| [|
| |2. Returns control to load|
| | module.

t -—+- |
|I/0 List|l. Receives control from load |
| Section | module and moves W(1l) toj
	output buffer.
	2. Returns control to load
	module.
{	
	3. Receives control from load
	module and moves W(2) to]
	output buffer.
	4. Returns control to load
	module.
	-)
	-
	-
I	
	5. Receives control from load
	module and moves W(10) toj
	output buffer.
	6. Returns control to 1load
	module.
b T -	
Closing	1. Receives control from load
Section	module and branches toj
IHCFIOSH to write contents]	
	of output buffer.
	2. Returns control to load
	module to continue load
	module execution.
I L s o e J	

Appendix G:

I1/0 Device Manipulation Routines

The 1I/0 device manipulation routines of
IHCFCOME implement the BACKSPACE, REWIND,
and END FILE source statements. These
routines receive control from within the
load rmodule via calling sequences that are
generated by the ccmpiler when these state-
ments are encountered.

The implementation of REWIND and END
FILE statements 1is straightforward. The
I1/C device manipulaticn routines submit the
approrriate control request to IHCFIOSH,
the I/O interface nnodule. After the
request is executed, ccntrol is returned to
the calling routine within the load module.

The BACKSPACE statement is processed in
a similar fashion. However, kefore control
is returned to the calling routine, it is
determined whether the record backspaced
over is an element of a data set that does
not require a format. If the record is an
elemrent of such a data set, that record is
read into an I/70 kuffer and the recoxd
count is obtained from its control word.
Backsrace control requests, equal in number
to the record count, are then issued and
control is returned to the calling routine.
If the record is not an element of such a
data set, control is returned directly to
the calling routine.

Write-to-Operator Routines

The write-to-operatox routines of
IHCFCCME implement the STOP and PAUSE
source statements. These routines receive

control from within the 1load module via
calling sequences generated by the compiler
upon recognition of +the STOP and PAUSE
statements.

Object-Time Library Subprograms 115

STOP: A write-to-operator (WTO) macro-
instruction is issued to display the
message associated with the STOP statement

on the console. Locad module execution is
then terminated Ly passing control to the
program termination routine of IHCFCOME.

PAUSE: A write-to-operator-with-reply
(WTOR) macro-instruction is issued to dis-
play the message associated with the PAUSE
statement on the conscle and to enakle the
operator's reply tc be transmitted. A WAIT
macro-instruction is then issued to deter-
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the call-
ing routine within the load module.

Utility Routines

The utility routines of IHCFCOME perform
the following functions:

e Process object-time error messages.

e Process arithmetic-type program inter-
ruptions.

e Terminate load module execution.

PROCESSING OF ERROR MESSAGES: Error mes-
sage processing routine (IBFERR) receives
control from various FORTRAN library sub-

programs when they detect object-time
errors.

Error message processing consists of
initializing the data set upon which the

written and also of
writing the message. If the type of error
requires load module termination, control
is passed to the termination routine of
IHCFCOME; if not, control 1is returned to
the calling routine.

message is to be

PROCESSING OF ARITHMETIC INTERRUPTIONS:
The arithmetic-interrupt routine (IBFINT)
of IHCFCOME initially receives control from

within the load mwodule via a compiler
generated calling sequence. The call is
placed at the start of the executable
coding of the 1load module so that the

interrupt routine can set up the program
interrupt mask. Subsequent entries into
the interrupt routine are made through
arithmetic~type interruptions.

116

The interrupt routine sets up the pro-
gram interrupt mask Lty means of a SPIE
macrc-instruction. This instruction speci-
fies the type of arithmetic interruptions
that are to cause control to ke passed to
the interrupt routine, and the location
within the routine to which control is to
be rassed if the specified interruptions
occur. After the mask has been set, con-
trol is returned tc the calling routine
within the load mcdule.

In processing an arithmetic interrup-
tion, the first step taken by the interrupt
routine is to determine its type. If
exponential cverflow or underflow has
occurred, the appropriate indicators, which
are referenced by OVERFL (a 1library
subprogram), are set. If any type of
divide check caused the interruption, the
indicator referenced by DVCHK (also a
library subprogram) is set.

Regardless of the type of interruption
that caused control +to be given to the
interrupt routine, the 0ld program PSW is
written out for diagnostic purposes.

After the
cessed,
rupted
tion.

interruption has been pro-
control is returned to the inter-
routine at the point of interrup-

PROGRAM TERMINATION: The load module ter-
mination routine (IBEXIT) of IHCFCOME
receives control from various library sub-

programs (e.g., DUMP and EXIT) and from
other IHCFCOME routines (e.g., the routine
that processes the STOP statement).

This routine terminates execution of the
lcad module ky the following nreans:

e Calling IHCFIOSH to check
CHECK macro-instruction)
write requests.

(via the
outstanding

e Issuing a SPIE macro-instruction with
no parameters indicating that the
FORTRAN object module no longer desires
tc give special treatment to program
interruptions and does not want maska-
ble interruptions to occur.

e Returning to the
supervisor.

operating system

Chart 13.

IHCFCOME Overall logic Diagram and Utility Routines

* IHCFCOME IS HREKAZHEXR AKX XR SEE TABLE 26 FOR A BRIEF
ENTERED VIA * * CALLING * DESCRIPTION OF THE FUNCTION
CALLING SE- *SEQUENCE WITHIN* OF EACH IHCFCOME ROUTINE/
QUENCES GEN- * LOAD MODULE SUBROUTINE .

ERATED AT L2222 23 2 2 EYs 2

COMPILER TIME.

v

*****53***l******

*
x DETERMINE *
* REQUEST *
* TYPE *
* *
* *

L2 a2 22222222

v
l**********iiil********i}*{{**********i*{***i*Ii****ii**{*i************i***{ll**i{*****
* *

* *

* * * * i'
* REQUEST TYPE * CHART* MAJOR PROCESSING * SUSROUTINES CALLED *
* * 1D, * ROUTINES * *
* * * * *
* * * * *
* READ/WRITE * 14A2 * FROWF,FWRWFsFIOLFs * FCVII,FCVFO.FCVEI,FCVDI *
* REQUIRING A FORMAT ¥ * FIOAF sFENDF * FCVED.FCVDO'FCVID'FCVFI-FCVAI.FCVAD*

****{***************l**ii***Il*************}*****i*i******i{******{****i*******l*****i'

* * * * *
* READ/WRITE NOT * 14F2 * FRONF ,FWRNFsFIOLNs * NONE *
* REQUIRING A FORMAT * * FIOANFENDN * *
{{i***********&**ll**********ili***l***********{i***il****{**l{***{**l{*****l******
*

* DEVICE * 1583 * FBKSPyFRWND, FEQFM * NONE *
* MANIPULATION * *
* * * * *
l****i**l*i***l{*}*{*{&****************************i**I***{************************
* * * *

* WRITE TO * 15G3 * FSTOP,FPAUS * NONE *
* OPERATOR * * * &

* *
&{iik*i*&*i******il******{}********i*********i*******************************ii***i**

UTILITY ROUTINES

EERRGLERRERRRER EEEKGD AR HRNNNR ERERGAERREXXRER
* FSTOPR * * FORTRAN * * LOAD *
* IHCIBERRs OR * * LIBa. * * *
* IBFERR * * UBPRS * * MODULE *

EREEREERRRRENRR Ea g e R e e e T

v v v
LR T R e e e 2 AREERH2 AR REERRRXN LRI e 22 T2 T T
* IBEXIT * * IBFERR * * IBFINT *
Lo L R T R e et D e R et BT Bt T s et 2
* CLOSE ALL * * PROCESS * * PROCESS *
* DCBS * * OBJECT TIME * * ARITHMETIC *
* (TERM EXEC) #* * ERRGRS * * INTERRUPTIONS *
L e 2 2 L2 a T TR R R TR L T e e
v v v
HH I] NN N L NP s e ERKEK J4RERR AR HNK
Jos * * * * LOAD *
* * * IBEXIT * * *
*® SCHEDULER * * * * MODUL.E
NN NRR RN AR NN RN HEEEEEXRRERERENR

Appendix G: Object-Time Library Subprograms

117

Chart 14.

LA

*#14 »

* A2
. *
*

L

W
*14 #
* Fo#
. *

[

118

IHCFCOME

FROWF/FWRWF
HRRRRADNREEEN R NE
#PERFORM OPENING#*
*DPERATIONS FOR *

——-——>#% READ/WRITE *

* REQUIRING *
* ORM »*
WHERRRERRRRRREN RN

LOAD MODULE

FIOAF/FIOLF
ETSY TP I 2
* *

PERFORM I/0 %

v
HEERRDE RN NNRNR
* *

*GET LIST ITEM. #

*#LIST OPERAT!Gna
' ON LIST ITI *

*&**l*l{{*d&*i»'*

CALL 1,0 LIST ‘(
* SECTION OF
* IHCFCOME
-&**»5:&’*&*:&*«*

FENDF
HAERRD2EFEREH AR AR
» *

CLOSE OuT *

HEREEDERFHE NN RREN
* *

CALL _CLOSING

*

» 1/0

* OPERATION *
* »
*

P T e 2

* *
* SECTION OF *
* IHCFCOME *
* *
* *

R I e e g

THCFCOME

FRONF/FWRNF
ERRERFEORERRERER N
PERFORM OPENING
*QPERATIONS FOR *

>*READ/VRITE NOT *
REQUIRING *

* A FORMAT
P R I 2 22 a2

v
l**i&Eq*i&*l"iil
* CONTINUE WITH *
% LOAD MODULE *
* EXECUTION *
* *

E e R e Y

LOAD MODULE

FI1O0LN/FI0OAN
HRRERRGI AL RE RN
* »

* PERFORM 1/0 *
IST OPERATIONS<
* ON LIST ITEM *

ii****i*i!i*ﬁi***

v
HRERRGEINRREERRNE
* *

#*GET LIST ITEMe *

* CALL I/0 LIST #<—
* SECT!ON OF l

* IHCFCO
*Q***Qllil***{***

FENDN
a2 I NPT R S 2 2 22 2]
* *

CLOSE OuT

v
22 NPE AR S L2222 g
*

* CALL CLOSING

* *
* 1/0 *
* OPERATION *
* *
* *

NN RR N

* SECTION OF
* 18COM

* IHCFCOME
I A e e i 2

* ok kK

v
HEERRKG AR ARRRERRR
*

CONTINUE WITH *
LOAD MODULE %
EXECUTION *

*

*

* ok &k k

FHEERERRRERERNRR

Implementation of READ/WRITE Source Statements

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/0 LIST ITEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY
CDMPILER HHEN
ALL I/0 LI

1TEMS PROCESSED

THIS CALL IS
GENERATED BY
COMPILER WHEN
1/0 LIST 1TEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY

ITEMS PROCESSED

Chart 15.

W
* 15 #
* B3
* *

*

v
HRHEDI AR RN RN
#* *
#DETERMINE TYPE *
* OF DEVICE *
: MANIPULATION #

*
[R T e R T T)

BACKSPACE
FBKSP

v

R ED2E NN
* *
IMPLEMENT
BACKSPACE
SOURCE

STATEMENT
ERREEREEERERRRER R

LR R]
* kK

REWIND

FRWND
v
R RD TR NN
* *

* IMPLEMENT *
* REWIND *
* SOURCE *
* STATEMENT *

LRI ST e e e e]

v
HRUREIHERRRRRRE
* *

*
* MODULE *
RN NN RN

R
*#15
* 3w

v
HRRENGIT RN RN NN
» *
*DETERMINE TYPE #
* OF WRITE TO *
* OPERATOR »

* *
WA TN R R

*<

ENDFILE
FEDFM

EREREDL RN RN
* *

* IMPLEMENT *
* ENDFILE *
* SOURCE *
* STATEMENT *
L T T S T

sTaP
FsSTOP
v

RN P DWW NN
* *
* IMPLEMENT *
» STOP *
* SOURCE *
* STATEMENT *
RERE T EINR N RN NR

\'2
FRERKDWEETREEER
* *
* IBEXIT *

P s

PA?SE
FPAUS
v

ERERRJARERRRANR RN
* *
* IMPLEMENT *
* PAUSE *
* E *
* T *

STATEMEN
ERERFRERRRR RN RN

v
HRRRKH RN AN
* LOAD *
* *

* MODULE *
LR e s T

Appendix G:

Device Manipulation and Write-to~Operatcr Rcutines

Okject-Time Library Subprograms

119

Table 26. IHCFCOME Routine/Subroutine Directory

iRoutine/Subroutl;eI o Function T]
{FBKSP ---lzgpleme;;;—the BACKSPACE source stat;;;nt. B _1
:FCVAI =Reads alphameric data. }
}FCVAO :Writes alphameric data. :
| FCVDI1 =Reads double-precision data with an external expcnent. I
| FCVDO EWIiteS double-precision data with an external exponent. =
=FCVEI gReads real data with an external exponent. {
lFCVEO =Writes real data with an external exponent. {
| FCVFI |Reads real data without an extermal exponent. }
IFCVFO }Writes real data without an external exronent. }
}FCVII =Reads integer data. }
}FCVIO }Writes integer data. }
| FENDF :closing section for a READ or WRITE requiring a format. {
| FENDN |Closing section for a READ or WRITE not requiring a format.

IFEOFM IImplements the ENDFILE source statement. I
| FIOAF |I/0 list section for list array of a READ or WRITE requiring a}
| | format. |
EFIOAN |I70 1list section for list array of a READ or WRITE not requiring aI
| |format. |
=FIOIF |I70 list section for the list variable of a READ or WRITE requiring{
| |a format. |
=FIOIN =I/O list section for the 1list variable of a READ or WRITE not:
| |]requiring a format. |
EFPAUS :Implements the PAUSE source statement. :
:FRDNF ‘Opening section of a READ not requiring a format. :
:FRDWF =Opening section of a READ requiring a format. }
=FRWND }Implements the REWIND source statement. :
:FSTOP !Implements the STOP source statement. :
| FWRNF }Opening section for a WRITE not requiring a format. {
| FWNRWF }Opening section for a WRITE requiring a format. }
| IBEXIT |Closes the data control blocks for all FORTRAN data sets are}
| |still open and terminates the execution. |
=IBFERR =Processes okject-time errors. :
IIBFINT }Processes arithmetic-type program interrurtions. J

L

L. ——— P —_—

120

IHCFIOSH

IHCFIOSH, the cbject-time FORTRAN
input/output data management interface,
receives input/output requests from

IHCFCOME and submits them to the appropri-
ate BSAM (kasic sequential access method)
routines and/or open and close routines for
execution. Chart 16 illustrates the over-
all logic and the relationship among the
routines of IHCFIOSH. Table 27, the IHCFI-
OSH routine directory, lists the routines
and their functions.

Table and Blocks Used

IHCFIOSH uses the following table and
klocks during its processing of
input/output requests: (1) unit assignment
table, and (2) unit blocks. The unit
assignment table is used as an index to the
unit blocks. The unit blocks are used to
indicate 1I/0 activity for each unit number
(i.e., data set reference number) and to
indicate the type of operation requested.
In addition, the unit blocks contain skele-
tons of the data event control blocks
(DECB) and the data control blocks (DCB)
needed for I/0 operations.

UNIT ASSIGNMENT TABLE:
table (IHCUATBL) resides on the FORTRAN
system 1library (SYS1.FORTLIB). Its size
depends on the maximum number of units that
can ke referred to during the execution of
any FORTRAN load module. This number is
specified during the system generation pro-
cess via the FORTLIB macro-instruction.
The unit assignment table is included (by
the linkage editor) in +the FORTRAN load
module as a result of an external reference
to it within IHCFIOSH.

The unit assignment

The unit assignment table has the fol-
lowing format:

Appendix G:

r==-== T T L)
| Reserved | #* n x 4 + 4|4 bytes|
— -t ¥ 1
Data set reference		
numker of error	Reserved	4 bytes
outrut device		
t i + i		
** Pointer to		
first unit	4 bytes	
block [
t + i
I - [I
- - [
|- [- |
f---- 3 |
| ** Pointer to | |
| last unit |4 bytes|
| block | i
pomen 1 1
| Default values for first unit |8 bytes|
| klock i |
8 —— — —— 4 4
r T 1
|- I I
| |- I
|- |- I
b= -—- + 1
| Default values for last unit |8 bytes|
| block | |
b — . 1
| *n is the maximum number of wunits that|
| can be referred tc by the FORTRAN load]
| module. The size of the unit table is|
| equal to (8 + n x 12) bytes.

| **The pointers to the various unit blocks|
| are inserted into the unit assignment|
| takle when the wunit bklocks are con-|
| structed by IHCFIOSH. |
S S, J

The default value section of the unit
assignment table contains standard values
that IHCFIOSH inserts into the arpropriate
fields (e.g., BUFNO) of the DCB skeleton
section of the wunit block 1if the user
either:

e Causes the load module to be executed
via a cataloged procedure, or

e Fails, in stating his own procedure for
execution, to include in the DCB param-
eter of his DD statements those subpar-

ameters (e.g., BUFNO) he is permitted
to include (refer to the publication
IBM System/360 Operating System:

FORTRAN IV (E) Programmexr's Guide).

Object-Time Library Subprograms 121

Note: Control 1is returned to IHCFIOSH
during data control block opening so that
it can determine if the user has included
the subparameters in the DCB parameter of
his DD statements. IHCFIOSH examines the
DCB skeleton fields corresponding to user-

permitted subparameters, and upon
encountering a null field (indicating that
the user has not specified the

subparameter), inserts the standard value
(i.e., the default value) for the subparam-
eter into the DCB skeleton. (If the user
has included these subparameters in his DD
statement, the control program routine per-
forming data control block opening inserts
the subparameter values, before giving con-
trol to IHCFIOSH, into the DCB skeleton
fields reserved for those values.)

UNIT BLOCKS: The first reference to each
unit number (data set reference number) by
an input/output operation within the
FORTRAN 1load module causes IHCFIOSH to
construct a unit block for each unit num-
ker. The main storage for the unit blocks
is oktained by IHCFIOSH via the GETMAIN
macro-instruction. The addresses of the
unit blocks are placed in the unit assign-
ment takle as the unit blocks are con-
structed. All subsequent references to the
unit numbers are then made through the unit
assignment block. Each unit block has the
following format:

—_— =17

r T T -
| ABYTE | BBYTE | CBYTE | LIVECNT |
1 1 4 4

b
|Address of Buffer 1
[

Housekeeping

£
|Address of Buffer 2 Section
L

r
|Carrent buffer pointer
L

S
|Record offset
1

[\

b
|DECB skeleton section
L

b e e e e s i e e e s o i

*
|DCB skeleton section
L

Each unit block is divided into three
sections: a housekeeping section, a DECB
skeleton section, and a DCB skeleton sec-
tion.

Housekeeping Section: The housekeeping
section is maintained by IHCFIOSH. The

information contained in it is used to
indicate data set type, to keep track of
I/0 buffer locations, and to keep track of
addresses internal to the I/O buffers to
enable the processing of blocked records.
The fields of this section are:

e ABYTE. This field, containing the data
set type passed to IHCFIOSH by

122

IHCFCOME, can ke set to one of the
following:

FO - Input data set requiring a format.
FF - Output data set requiring a for-

mat.

00 - Input data set not requiring a
format.

OF - Output data set not requiring a
format.

BBYTE. This field contains kLkits that

are set and examined by IHCFIOSH during
its processing. The bits and their
meanings are as follows:

Bit on

-~ exit tc IHCFCOME on I/0 error

- I/0 errcr occurred

- current buffer indicator

not used

- end-of-current buffer indicator
- klocked data set indicator

- variable record format switch

- not used

NooumtsEwh RO
i

CBYTE. This field also contains bits

that are set and examined by IHCFIOSH.
The kits and their meanings are as
follows:

Bit on

0 - data control klock opened

1 - data control block not TCLOSE4

2 - data control block not previously

opened
- kuffer pool attached
- data set not rreviously rewound
data set not previously backspaced
- concatenation occurring -- reissue
READ
7 - not used

amEsw
]

LIVECNT. This field indicates whether

any I/0 operation performed for this
data set is unchecked. (A value of 1
indicates that a previous read or write
has not been checked; a value of 0
indicates that all previous read and
write operations for this data set have
keen checked.)

Address of Buffer 1 and Address of

Buffer 2. These fields contain poin-

ters to the two I/O buffers obtained
during the orpening of the data control
klock for this data set.

current Buffer Pointer. This field

contains a pointer to the I/0 buffer
currently keing used.

Record Offset. This field contains a

rointer to the current logical record
within the current buffer.

DECB Skeleton Section: The DECB (data
event control block) skeleton section is a
block of main storage within the unit
block. It is of the same form as the DECB
constructed by the control program for an L
form of an S-type READ or WRITE macro-

instruction (refer to the publication IBM
Systemn/ 360 Operating System: Ccontrol
Program _Services). The various fields of
the DECB skeleton are filled in by

IHCFIOSH; the completed block is referred
to when IHCFIOSH issues a read/write
request to BSAM. The read/write field is
filled in at open time. For each 1I/0
operation, IHCFIOSH suprlies IHCFCOME with:
(1) an indication of the type of operation
(read or write), and (2) the length of and
a pointer to the I/0 kuffer to be used for
the operation.

DCB Skeleton Section: The DCB (data con-
trol block) skeleton section is a block of
main storage within the unit block. It is
of the same form as the DCB constructed by
the control program for a DCB macro-
instruction under BSAM (refer to the
publication IBM System/360 Operating Sys-
tem: Control Program Services). The var-
ious fields of the DCB skeleton are filled
in Ly the control program when the DCB for
the data set is opened (refer to the
publication IBM System/360 Operating Sys-
tem: Concepts and Facilities). (Standard
default values may also be inserted in the
DCB skeleton by IHCFIOSH. Refer to "Unit
Assignment Table" for a discussion of when
default values are inserted into the DCB
skeleton.)

Buffering
All input/output coperations are double
buffered. (The double buffering scheme can

be overriden by the user if he specifies in
a DD statement: BUFNO=1.) This implies
that during data control block opening, two
buffers will be obtained. The addresses of
these buffers are given alternately to
IHCFCOME as pointers to:
¢ Buffers to be filled (in the case of
output) .
e Information that has been read in and
is to be processed (in the case of
input).

Communication With the Ccntrol Program

In requesting services of the control
program, IHCFIOSH uses L. and E forms of
S-type macro-instructions (refer to the
publication IBM System/360 Operating Sys-
tem: Control Program Services).

Appendix G:

Operation

The
into five sections:
write, device manipulation,
When called by IHCFCOME, a
IHCFIOSH performs its function
returns control to IHCFCOME.

processing cf IHCFIOSH is divided
initialization, read,
and closing.
section ‘of
and then

INITIALIZATION: The initialization action
taken by IHCFIOSH depends upon the nature
of the previous I/O operation requested for
the data set. The previous operation pos-
sibilities are:

Nc previous operation.

Previous operation read or write.
Previous oreration backspace.

Previous operation write end-of-data
set.

e Previous operation rewind.

No Previous Operation: If no previous
operation has been performed on the unit
specified in the I/O request, the initiali-
.zation section generates a unit Lklock for
the wunit number. The data set to be
created is then opened (if the current
operation 1is not rewind or lackspace) via
the CPEN macro-instruction. The addresses
of the I/0 buffers, which are obtained
during the opening process and placed into
the DCB skeleton, are placed into the
arprorpriate fields of the housekeeping sec-
tion cf the unit klock. The DECB skeleton
is then set to reflect the nature of the
operation (read or write), the format of
the records tc be read or written, and the
address of the I/O buffer to ke used in the
operation.

If the requested oreration is that of
write, a pointer to the buffer position, at
which IHCFCOME is to place the record to ke
written, and the block size or logical
reccrd length (to acccmmodate blocked logi-
cal records) are placed into registers, and
control is returned to IHCFCOME.

If the requested operation is that of
read, a record is read, via a READ macro-
instruction, into the I/0 buffer, and the
operation is checked for completion via the
CHECK macro-instruction. A pointer to the
location of the record within the buffer,
along with the number of bytes read or the
logical record length, are placed into

registers, and control is returned to
IHCFCCME.
Previous Operation Read or Write: If the

previous operation performed on the unit
specified in the present I/0 request was
either a read or write, the initialization
section deterrines the nature of the pre-
sent I/0 request. If it is a write, a
pointer to the Lkuffer position, at which

Object-Time Library Subprograms 123

IHCFCOME is to place the
written, and the blcck size or logical
record length are placed into registers,
and control is returned to IHCFCOME.

record to be

If the operation to be performed is
read, a pointer to the buffer location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and
control is returned to IHCFCOME.

Previous Operation Backspace: If the pre-
vious operation performed on the unit spec-
ified in the present 1I/0 request was a
backspace, the initialization section det-
ermines the type of the present operation
(read or write) and modifies the DECB
skeleton, if necessary, to reflect the
operation type. (If the operation type is
the same as that of the operation that

preceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those

described for "No Previous Operation,"”
starting at the point after the DECB skele-
ton is set to reflect operation type.

Previous Operation Write End-of-Data Set:
If the previous operation performed on the
unit specified in the present I/0 request
was that of write end-of-data set, a new
data set using the same unit number is to
be created. In this case, the initializa-
tion section closes the data set. Then, in
order to establish a correspondence between
the new data set and the DD statement
describing that data set, IHCFIOSH incre-
ments the unit sequence number of the
ddname. (The ddname is placed into the
appropriate field of the DCB skeleton prior
to the opening of the initial data set
associated with the unit number.) During
the opening of the data set, the ddname
will be used to merge with the appropriate
DD statement. The data set is then opened.
Subsequent processing steps are the same as
those described for "No Previous
Operation,™ starting at the point after the
data set is opened.

Previous Operation Rewind: If the previous
operation performed on the unit specified
in the present I/O request was rewind, the
ddname is initialized (set to FTxXF001) in
order to establish a correspondence between
the initial data set associated with the
unit number and the DD statement describing
that data set. The data set 1is then
opened. Subsequent processing steps are
the same as those described for "No Pre-
vious Operation," starting at the point
after the data set is opened.

READ: The read section of IHCFIOSH per-
forms two functions: (1) reads physical
records into the Luffers obtained during

data set opening, and (2) makes the con-

124

WRITE:

tents of these buffers available to

IHCFCCME for processing.

If the records being processed are
blocked, the read section does not read a
physical record each time it is given

contrcl. IHCFIOSH only reads a physical
record when all of the logical records of
the klocked record under consideration have
been processed by IHCFCOME. However, if
the records being fgprocessed are either
unklocked or of U-format, the read section
of IHCFIOSH issues a READ macro-instruction
each time it receives control.

The reading of records by this section
is overlapped. That is, while the contents
of one buffer are being processed, a physi-
cal record is Lkeing read into the other

buffer. When the contents of one buffer
have been processed, the read into the
other buffer is checked for completion.

Upon cormpletion of the read operation,
processing of that Ftuffer's contents is
initiated. In addition, a read into the
seccnd buffer is initiated.

Each time the read section is given
control it makes the next record available
to IHCFCOME for processing. (In the case
of blocked records, the record presented to
IHCFCOME is logical.) The read section of
IHCFIOSH places: (1) a pointer to the
record's 1location in the current 1I/0 buf-
fer, and (2) the number of bytes read or
logical record length into registers, and
then returns control to IHCFCOME.

The write section of IHCFIOSH per-
forms two functions: (1) writes physical
records, and (2) provides IHRCFCOME with
buffer space in which to place the records
to ke written.

If the recoxds being written are
blocked, the write section does not write a
physical record each time it is given
controel. IHCFIOSH only writes a physical
record when all of the logical records that
comprise the bklocked record under consider-
ation have been placed into the I/0O buffer
by IHCFCOME. However, if the records being
written are either unblocked or of U-
format, the write section of IHCFIOSH
issues a WRITE macro-instruction each time
it receives control.

The writing of records by this section
is overlapped. That is, while IHCFCOME is
filling one buffer, the contents of the
other kuffer are rteing written. When an
entire buffer has been filled, the write
from the other buffer is checked for com-
pletion. Upon completion of the write
operation, IHCFCOME starts placing records
into that buffer. In addition, a write
from the second buffer is initiated.

Each time the write section is given
control, it provides IHCFCOME with buffer
space in which to place the record to be
written. IHCFIOSH places: (1) a pointer to
the 1location within the current buffer at
which IHCFCOME is to place the record, and
(2) the block size or logical record length
into registers, and then returns control to
IHCFCOME.

Error Processing: If an end-of-data set or
an I/0 error is encountered during reading
or writing, the controcl crrogram returns
control to the location within IHCFIOSH
that was specified Quring data set initial-
ization. In the case cf an I/0 error,
IHCFIOSH sets a switch to indicate that the
error has occurred. Control is then
returned to the ccntrol program. The con-
trol program completes its processing and
returns control to IHCFIOSH, which interro-
gates the switch, finds it to be set, and
passes control to the I/O error routine of
IHCFCOME.

In the case c¢f an end-of-data
IHCFIOSH simply passes control to the
of-data set routine of IHCFCOME.

set,
end-

Chart 17 illustrates the execution-time

I/0 recovery procedure for any I/0 errors
detected ky the I/0 supervisor.

DEVICE MANIPULATION: The device
manipulation section of IHCFIOSH processes

backspace, rewind, and write end-of-data

set requests.

Appendix G:

Backsrace: IHCFIOSH processes the back-
space request by issuing a BSP (physical
backspace) macro-instruction. It then
places the data set type, which indicates
the format requirement, into a register and
returns control to IHCFCOME. (IHCFCOME
needs the data set type to determine its

suksequent processing.)

Rewind: IHCFIOSH rrocesses the rewind
request by issuing a CLOSE macro-
instruction, using the REREAD option. This
option has the same effect as a rewind.

Control is then returned to IHCFCOME.

Write End-Of-Data Set: IHCFIOSH processes
this request Ly issuing a CLOSE macro-

instruction, Type = T. It then frees the
I/0 kuffers by issuing a FREEPOOL macro-
instruction, and returns control to
IHCFCCME.

CIQOSING: The closing section of IHCFIOSH

exarmines the entries in the unit assignment
table to determine which data control
blocks are open. In addition, this section
ensures that all write operations for a
data set are ccrnpleted before the data
control klock for that data set is closed.
This is done by issuing a CHECK macro-
instruction for all double-buffered output
data sets. Control is then returned to
IHCFCOME.

Object-Time Library Subprograms 125

Chart 16. IHCF

IOSH Overall Logic Diagram
HEREATERRERERESE

*
: IHCFCOME
AN

o,y
e3 *o

S *o
DETERMINE #*.
%o OPERATION o
*e TYPE a®
*e

»
*
*

*

SEE TABLE 27 FOR A BRIEF
DESCRIPTION OF THE FUNCTION
OF EACH IHCFIOSH ROUTINE.

*, o
*
R I DEVICE
: c1 : INITIALIZATION READ WRITE MANIPULATION CLOSE
- -]
wnn v
FINIT FREAD eVe FRITE DL FCNTL v FCLOS v
HERRRC] IR *o c3 *e HRERRCAARRERENNER RREERCSHEREERHES
- * o* AN *q o *e * * * *
#* DECODE DSRN_ # YES «MORE RCDS IN¥. NQ <% OQUTPUT *o * CHECK * * CHECK ANY *
#AND BUILD UNIT # #,THIS BLOCK TOe%* * o BUFFER ¥ * STATUS OF * >%* QUTSTANDING *
'ELDCK IF NECES-* I BE PROCESSED#* ' *o FULL 0 * UNIT * * INPUT OR *
SARY *q ok *e o * * *® UTPUT *
IQGO}’{G*&**&“!!I v *, o v *a o¥ PXYTISTE IR 2T) e e T I 2T
EER * NO RRE * YES
* * * *n{*
* K1 * * K1 *
* * * * >’ c1 '
LA A2 d Li s 2 -
I%**
v v
* 1% D2%#% 3
* OPEN DATA * * READ * * WRITE *
#* CONTROL BLOCK ¥ *NEXT BLOCK INTO¥* * CONTENTS OF #*
#FOR DATA SET IF#* # THIS BUFFER, % # THIS BUFFERs %
#NOT PREVIOUSLY ¥ * SWITCH BUFFER * * SWITCH BUFFER *
OPENED * POINTERS * * POINTERS » P
‘l.‘l".l{‘l’**’*-‘*i * *
* E4
* *
T3]
v v
ot v v ¥,
E1l * ARRRRED E3 E4 *, P T e
o * * * * o *, * *
o DCB *o4 NO * CHECK RESULT # #* CHECK RESULT * EOF +% DETERMINE #. RWND * ISSUE CLOSE %
*e OPENED - % OF READ INTO # * oF * — OPERATION o%—————>#% WITH REREAD #*
.PROPERLV o® * DTHER BUFFER #* * FRrJM ClTHER - *. TYP ot * OPTION *
. * * I * UFFER * *, o* * *
E— v *e o P e
* YES E kA * BKSP
*17 # ERAR
* B2% *17 *
LR v >* B2 *
* P
* 17 % ERRR
v * B2% v
EREERE] RERRERRREN HHRRREDHERR BTN W * » RREERFLHHRL RN S
- »* * * * * 1SSUE *
* DETERMINE _ * * 1SSUE * * BACKSPACE, *
RECORD FORMAT #* >% MESSAGE *. % INDICATE DATA *
AND BLOCKING * * 1HC219C * TY
- * * * *
P e Py T e v RN RN v
EREER EXRRR
*17 * *17 =
* F2% * B2#%
* * *
* *
v
oty
1 ARG G R NN
1s * *
o* CURRENT #, YES * ISSUE CLOSEs *
#o OPe DEVICE L——>#% TYPE=T WITH #
. o o #* LEAVE OPTION #*
. o* *
*o oW v P e e L
* NO *n
* *
* E4 *
* *
RN
v
e¥e v
H1 . Iy e R
*q * *
READ *o WRITE * FREE 1/0 *
. - * BUFFERS FOR
*o HR!TE ¥ # THIS DATA SET *
*o ot » *
PO P T T e 2 v
READ ARREE
*17 *
* B2%
* *
*
v
2222 NFR LTS 22 AR S
* READ *
* BLOCK *
ERRERERRRRBNE
*EEE
- » <
* K1 #=>
AR
v
HRERE LR ERRRRN
PASS CURRENT #
*RECDRD POINTER *
ND LOGICAL ¥y
. RECORD LENGTH *
* T THCFCOME * Ml
REREREERRARE AR *17 =
* B2
* *

126

Chart 17.
THE 1/0 SUPERVISOR
IS ENTERED VIA BSAM
ROUTINE WHEN IHCFIOSH
ISSUES A MACRO-INST.
RAZ 22
®*17 =
* B2*
* *
*
v
¥
B *o
o ¥
«* HAS AN *, YES
*e EOF BEEN o
*o READ ¥
*o .
e ¥
T NO
v
¥,
3336 33 C] BN c2 * g
RETURN TO * . *e
»* BSAM, * NO o* 1/0 *o YES
IHCFIOSHs AND #*< < *o. ERROR IN o
* THCFCOME * *e 10s o*
* * *q ot
AR L2 XSS L) Hy o
E 222 *
* *
* C1 *
* *
*RRR
v
W NID] NN
* FORTRAN *
* LOAD *
* MODU *
LZE2 22T 2222 2% 23
CONT INUES
NORMAL
PROCESSING
W D NI NN
* *
* 1SSUE *
* MESSAGE *<:
* 1HC2181 *
* *
2222222 222X LT
¥R
*17 »
* F2 #—>
*
t2 22

v
L 222 -3 22 22222 22
* *

* PASS *
* ABORT CODE *
TO SCHEDULER
* *

*

L2222 22222 YL

v
[22 TP T TT T TR
* *
* SCHEDULER *
* *

L2 a2 22222222

ISSUES ABEND
MESSAGE AND
THEN CONTINUES
NORMAL. PRND-
CESSING

S *a
%o BUFFER BEEN <%

Executicn-time I/O Recovery Procedure

F R ND T W NN
*

*
* I1SSUE *
> MESSAGE *
* IHC2171 *
* *
E2 2222222322 ELY \"
E 2 X 3
* *
* F2 *
* *
LR L 2]
*****c3**l*ll****
* BSAM RETRY *
* APPROPRIATE *
># NUMBER OF *
* TIMES *
* *
b2 2122 R 2222221222
tE 222 DRSS T2 RS T
* IHCFCOME *
* DETERMINES *
* IF AN INVALID *<
* BUFFER HAS *
* BEEN READ *
LA 22222 ETITE LSS XY
e
v
Q*.
E3 *.

o« *e
o HAS

*eREAD YET o%
* o ¥

“He ok
#* NO

v

¥y
F3 *e
¥ *q
o* REWIND *q NO
#90OR BACKSPACE o*
*4 BEEN ¥
*ISSUED %
Wy oW
* YES

v
HERRRGIHAERRRER RN
*

*
* vOo1D *
* ABORT CODE *
* IN IHCFCOME *
* *
* *

LA S S 2SS X 22l

v
L2kt 22 22T
* FORTRAN *
* LOAD *
* MODULE *
LR L L L s

CONTINUES

NORMAL
PROCESSING

Appendix G:

¥
C4 %,
¥ *, Prrey
o* 1/0 *. YES *
>%., ERROR BEEN o >* C1 *
.CORRECTED + * *
*q o # PrTrS
Xy ¥
* NO

v

R 222 TSI XL T Y N
* *
RETURN *
ABORT CODE *
TO IHCFCOME *
*

*

3 IR NN NN

* % %k k

Object-Time Library Subprograms

Table 27.

IHCFIOSH Routine/Subroutine Directory

iRoutine/SubroutineT _-__—Function _1
{FCLCS --TE;ECKS double-buffered outp;; data setsj——— o -1
=FCNTL =Services device manipulation requests. :
{FINIT IInitializes unit and data set. }
:FREAD }Services read requests. :
iFRITE iServices write requests. {

- - J
IHCIBERR deciral form. IHCIBERR then 1links to

IHCIBERR, a memker of the FORTRAN system
library (SYS1.FORTLIB), processes object-
time source statement errors if the LOAD
option is specified. IHCIBERR is entered
(via a calling sequence generated by Phase
20) when an internal sequence number (ISN)
cannot be executed Lecause of a source
statement error.

The ISN of the invalid source statement

is obtained (from information in the
calling sequence) and is then converted to

128

IHCFCCME to implement the
following error message:

writing of the

IHC230I - SOURCE ERROR AT ISN
XXXX - EXECUTION FAILED

After the error message is written on
the user-designated error output data set,
IBCIBERR passes control to the IBEXIT rou-
tine of IHCFCOME tc terminate execution.

Chart 18 illustrates the
of IHCIBERR.

overall logic

Chart 18. TIHCIBERR Overall Logic Diagram

AN A TN IR
* CALL ING *
*SEQUENCE WITHIN®
LOAD MODULE

It 1

v
T2 TR T T
* »*
#OBTAIN INTERNAL#
SEQUENCE NUMBER™
* (ISN) *
*

W3 33 I W NR

v
[ek s T T T T R
*

CONVERT ISN #
TO DECIMAL *
FORMAT *

*

*

AN KRR

% %k ok kK

v
HEREEDIHRREERXENRE
* BRANCH TO *
* IHCFCOME TO %
* HANDLE THE *
* WRITING OF *
* ERROR MESSAGE *
HREREEXRRERRRRRAN

A\
HHHRE J RN HNRNN
* IBEXIT RTN *

OoF *
* IHCFCOME *
9 3 3 3 3% kKK

IHCIBERR IS
ENTERED VIA
CALLING SE-—~
QUENCES GEN-
ERATED BY
PHASE 20 AT
COMPILE TIME.

Appendix G:

Object-Time Library Subprograms

129

APPENDIX H:

LINKAGES TO THE INTERFACE MODULE

AND THE PERFORNMANCE MODULE

LINKAGE TO THE INTERFACE MODULE

Fcr SPACE compilations, the components
of the compiler 1link to the interface
module (IEJFAGAO) for:

¢ Input/output requests.
e End-of-phase/interlude requests.

In addition, for both SPACE and PRFRM
compilations, the compiler components link
to the interface module for patch requests
and for print control operations.

Input/Output Request Linkage

The linkage to the interface module for
an I/0 request is:

L LNKREG, IOPARS
BAL 15,FICRTN

where
e INKREG is general register 0.
e IOCPARS is the following U4-byte word:

T
|Operation|Address of the I/O buffer
|Field

| IS NP -

1 byte 3 bytes

e e

The operation field bkits and their
meanings are illustrated in Table 28.

Table 28. Operation Field Bit Meanings

k]
|Bit O |Check operation |
PO s -

1

|Bit 1 lRead operation |
fEIt 2 EWrite operation

r;;t 3 IFlash operation

|B;t 4 INot used

|
4
I
t i
|Bits 5-7|000 - SYSIN is to be used |
| {001 - SYSPUNCH is to be used|
| |010 - SYSLIN is to be used |
| {011 - SYSUT1 is to be used |
| {100 - SYSUT2 is to be used |
| {101 - SYSPRINT is to be used|
| 1110 - Not used |
| 1111 - Indicates the|
| address of the DECB toj
|
|
Lee

that

ke used is supplied in|

|
|
| PARREG, REG1. |
L J

130

e FIORIN is the name of a branch instruc-
tion in the commrunication area that
kranches to the I/0 routine (SIORTN) of
the interface module.

End-Of-Phase/Interlude Request Linkage

The 1linkage to the interface module for
an end-of-phase/interlude condition is:

L LNKREG, NXPARS
BC 15, FNEXT
where

e INKREG is general register 0.
e NXPARS is the following 4-byte word:

r T 1

|Entry point identifier |Data set |
|of next phases/interlude |disposition|

| |field i

L —_— 4 J
3 bytes 1 byte

The data set disposition field bits and
their meanings are illustrated in Table
29.

Takle 29. Data Set Disposition

Field Bit Meanings

f T
|Bits 0-1|Not used |

¢ ¥ -

|[Bit 2 |TCLOSE the DCB for SYSIN

‘. -

|Bit 3 |TCLOSE the DCB for SYSPUNCH

L

b -

|Bit 4 |TCLOSE the DCB for SYSLIN |

e {

|Bit 5 |TCLOSE the DCB for SYSUT1 |

t — i

|Bit 6 |TCLOSE the DCB for SYSUT2 |

L [%
|
J

T T
[Bit 7 |TCLOSE the DCB for SYSPRINT
L L

e FNEXT is the name of a branch instruc-
tion in the communication area that
branches to the end-of-phase routine

(SNEXT) of the interface wodule.

Patch Requests

The 1linkage to the interface module for
a patch request is:

LR WRKREG, BASEA
BAL 15, FPATCH

DC C'XX!

where

* WRKREG is general register 14.

* BASEA contains the relative starting
address of the component to be tempo-
rarily modified.

e FPATCH is the name of a branch instruc-
tion in +the communication area that
kranches to the patch routine (PATCH)
in the interface module.

e 'XX"' is the fifth and sixth characters
in the name of the component to be
temporarily modified. (That is, 'XX!
indicates the component to be
modified.)

Print Control Operations

The linkage to the interface module for
a print control operation is:

BAL 15, FPRTCTRL
DC B' XXXXXXXX"
DC AL3 (IOERR)
where

e FPRTCTRL is the name of a branch
instruction in the cormunication area
that Lkranches to the print control
operations routine (PRICTRL) of the

interface module.

s ‘xxxxxxx' is the carriage control char-
acter.

¢ AL3 (ICERR) is an address constant
containing the address of the 1/0 error
routine of the component requesting the
print control operation.

LINKAGE TO THE PERFORMANCE MODULE

For PRFRM compilations, the components
of the compiler 1link to the performance
module (IEJFAPAO) for:

e Input/output requests.
e End-of~phase requests.

Appendix H:

Input/Output Request Linkage

The 1linkage to the performance module
for an I/0 request is kasically the same as
that described for the 1linkage to the
interface module for an I/0 request. The
only difference is that the address in the
branch and 1link (BAL) instruction is, in
effect, replaced by the address of the 1I/0
routine (PIORTN) c¢f the performance module.
The PIORTN <routine, in turn, links to the
I/0 routine (SIORTN) of the interface
module when it is either ready to read or
write, or to check the result of a previous
read or write.

End-Cf-Phase Request Linkage

The 1linkage to the performance module
for an end-of-rhase request is kLasically

the same as that descriked for the linkage
to ' the interface module for an
end-of-phase/interlude request. The only

difference is that the address in the
branch on conditicn (BC) instruction is, in
effect, replaced by the address of the
end-cf-phase routine (PNEXT) of the perfor-
mance module.

Note: Internally, the compiler components
use symkolic names when transferring con-
trol to a subsequent component. The sym-
bolic names and the actual names of the
compcnents are illustrated in Takle 30.

Table 30. Symkolic and Actual Names of

Comriler Components

| Syrkclic Name]Actual Name
L 4

| *Never transferred to by another compiler
| corronent.
[

1
,'
v T h
IEJFAAAQ*	Phase 1-Initial entry
IEJFAABO	Phase 1-Subsequent entries
IEJFAGAQ*	Interface module
IEJFAKAO	Print kuffer mcdule
IEJFAPAO*	Pexrformance module
IEJFAXAQ#*	Source symbol module
IEJFEAAQ	Phase 7
IEJFGARO	Phase 10D
IEJFJAAQ	Phase 10E
IEJFJGAO	Interlude 10E
IEJFLAAOQ {Phase 12	
IEJFNAAO	Phase 14
IEJFNGAO	Interlude 14
IEJFPRAO	Phase 15
IEJFPGAQ	Interlude 15
1EqrvAR0	Phase 25
ase	
IEJFVCAOQO*	Object listing module
IEJFXAAQ	Phase 30 i
L 1	
J

Linkages to the Interface Module and the Performance Module 131

APPENDIX I:

DIAGNOSTIC MESSAGES AND STATEMENT/EXPRESSION PROCESSING

This appendix contains the names of the
phases and the routines within the phases
that: (1) generate diagnostic messages, and
(2) process the various FORTRAN statements
and expressions.

DIAGNOSTIC MESSAGES

Two types of diagnostic messages are
generated by the FORTRAN comrpiler - infor-
mative messages and error/warning messages.
The messages produced by the compiler are
explained in the IBM System/360 Operating
System: FORTRAN IV (E) Programmer's Guide.

Informative Messages

Four informative messages are generated
by the compiler to inform the programmer or
operator of the status of the compilation.
The messages and the rhases and sukroutines
in which they are generated are illustrated
in Table 31.

Table 31. Informative Messages
|Message/number |Phase|oubrout1ne|
—— Il ! -
T T
|IEJOOlI | 7 |MESSGOUT |
t - ¥ ¥ 1
| LEVEL: rmthyr | | |
|0S/360 FORTRAN IV (E | | i
| LEVEL SUBSET)COMPILATION| | |
|DATE: yy.ddd | 7 |EJECTPRT |
4 4 4
T m 1
END OF COMPILATION |} 30 |EOJOB |
—— - 1 4 4
T T 1
|SIZE OF COMMON and SIZE { 30 |ENDCRD |
{OF OBJECT MODULE [| i
L -t 1 J

Exrror/Warning Messages

Fach error/warning mwessage prcduced by
the compiler is identified by an associated
number. Table 32 relates a message number
with the phases and subrcutines in which
the corresponding message is generated.

132

Takle 32. Error/Warning Messages
== T 1
|Message| Phase | Sukroutine or Routine |
| Number | | |
t 1 t |
| IEJ0021|7 | MESSGOUT |
—_— —_—— 4
4
|IEJ003I|7 | MESSGOUT |
b 1 ¥ 1
| IEJOOULT {7 | MESSGOUT |
b 1 1 - 1
|IEJOOSI|7 | MESSGOUT |
b N |
L) T 1
|IEJ006I|7 | MESSGOUT |
—_— J— 4
{
|IEJ007I|7 | MESSGOUT I
-- -—4- - 1
|IEJ008I|7 | MESSGOUT |
—_ ——— 4
T 1
| IEJ029I{10D | DIMSUB |
[W —— J
a
| IEJ030I|10D | COMMON, EQUIVP |
______________ 4
1

| IEJ031I |12 | EQUIVP
1

1

l' T T
| IEJ032I|10D, 10E| LITCON

| _.._....___l,_____- -

IEJ0331[10D, 10E| GETWD

___+ —_—
| IEJ0341 {10D | FUNCT, SUBRUT
1

— 4

t +
| 830351 | 10D | FUNCT, SUBRUT

[IEJ036I|10E

L

——t e e e e e e e e e e e e e e e e e s e e e e

| ARITH

|IEJ037I|1OD 10E|CLASS, ARITH, ASF, IF

|IEJ0381|10D
| |
| |

| INTGER/REAL/DOUBLE,
| EXTERN, COMMON, EQUIV,
| DIM

S I,

4
| IEJO039I 10D 10E| SYMTLU

| IEJO43I |12
1

|
|
]
1
—“

t 1
| TEJO44T|10D, 10E| LITCON

|IEJOH51|10D 10E|LITCON

1
|
|
|
-~

}
|IEJ0u61|10D 10E| LITCON

L

|
I S,

(Continued)

Table 32. Error/Warning Messages (Continued)
r I T 1 r— T 1
| Message| Phase | Subroutine or Routine | |Nessage| Phase | Sukroutine or Routine |
| Numker | | | |Number | | |
e ~4- 1 -4 :
|IEJ0471|10D,10E |CLASS, DIM | |1EJ0771|1u | REAC/READWR, DC, FILLEG, |
b —4- {1 | | SKPBIK |
IIEJOMSIlloD | DIMSUB | p——————f———- + 4
3 + -4- 4 | IEJO78I|14 | CKENDO |
|IEJOH91|10D |DIM, DIM9O | - + -—+ |
3 4 -4 | IEJO79I|10E | GO |
|IEJ0501|10D | EQUIV | b 4 -+ 4
3 4 -——y |IEJO79I |14 | REAC/READWR, DO |
|IEJ051I|10D |EQUIV, DINM | e + 9
b + 4 | IEJO8OI |10FE | Go i
|IEJ051I|14 | FCOMACHK] } + + —_— 4
b + 4 | IEJ080I |14 | READ/READWR |
i EJ052I|10D |SUBS, EQUIV | - + 4 4
t - - i | IEJ081I{10D,10E| ARITH, EQUIV |
| EJ053I|10D | SUBS | b=t 4
[} 9 |IEJOS1I|14 | READ/READWR, FMDCON,
|IEJ05u1|10E |ASF | i | | FMECON, FMFCON, FMTINT, |
p——————t 4 4 | | | FMACON, FORMAT
|IEJ0551|10D | FUNC, SUBRUT | s + 4 4
———————— + —_—dq | IEJ082I|10D,10E] LITCCN |
|IEJOS6I|10E |Go | bt + 4
- 4 4 i |IEJ082I |14 | NOFDCT, INTCON |
| IEJOS7I|10E |READ/WRITE i - e + 4
R -4~ 4 {IEJO083I|10D,10E| CSORN, INTCON [
| IEJOS8I|10E | READ/WRITE I — 4 4 ———
F - -4 4 {IEJ083I |14 | INTCON [
|IEJ060I{10D |EQUIV I e e i
——————t 4 - |IEJ08uI|1OD 10E| WARN/ERRET I
|IEJ0611I{10D,10E |EOSR | 3 -—4 -4
————t— + i |IEJoauI|1u | ERROR, WARN |
|IEJ063I|10E | EQUIV | s + —4 1
8 -4 + 4 |IEJO084I |15 | ERROR, WARN [
| IEJO641]|10D,10E, ILABTLU, SYMTLU, | ———ee % —————— e 4
————— e -——4 | IEJ085I |12 | DPALOC, SALO |
| IEJO641]|30 ITWNFIV | po———e E— + i
—————d— 4 | IEJO85I |14 | PRESCN |
{IEJ065I|10D,10E |CLASS, LABLU, PAKNUM | b + —4 -4
e i | IEJ086I |14 | BLANKZ |
|IEJ066I|10E |DO | - 4 —4 i
t 4 | IEJOS7I|14 | FMDCON, FMECON, FMFCON, |
IIEJ0681|10D 10E |LITCON] | | | FMTINT, FMACON, FSUBST |
b T O —1 } ¥ 1
| IEJO69I|10E | ASF | |IEJO88I |14 | LPAREN |
F e e T et Sttt 1
IEJ070I{10D | FUNCT, SUBRUT I |IEJOS9I |14 | UNITCK i
-4 + 1 ¥ 4 1
IEJO71I{10E |CALL | IEJO090I |14 | FQUOTE |
: + i $mmmmmmmt 1
|IEJO721I|10E | ARITH I | IEJ091I|1u | FMINUS, FPLUS |
" + R et | L 1
fIEJ0731[10D,10E | PUTX I |IEJO921|1u | FCOMMA I
b t t I ¥ 1
{IEJ07HI|100 { COMMON I |IEJ09uI|1u | FMDCON, FMECON, FMFCON, |
b 4 } 4 | [| FMTINT, FMACON
{IEJO75I|14 | FORMAT, CKLM I F + -4 i
b + + 4 | IEJ095I |14 | READ/READWR I
|IEJO76I|14 | READ/READWR, FORMAT | ¢ 4 + {
p——-t 4 4 [IEJO96I |14 | READ/READWR |
| IEJ0771|10D,10E |ASF, READ/WRITE, EOSR, | -— + + {
| | |DO, SUBS, EQUIV, FUNCT, | |IEJO97I |14 | INSAV |
| | | SUBRUT, DIMSUB, DIM, | [— -4 -
| | | SKPBLK | |IEJ09BI|1u | FQUOTE |
L 1 L k] b L 1
(Continued)

Appendix I:

Diagnostic Messages and Statement/Expression Processing

133

Table 32. Error/Warning Messages (Continued)

r~— T T a r T ===]
|Message| Phase | Sukroutine or Routine | | Message |Phase | Subroutine or Routine |
| Numker | | | | Numbexr | | |
b + 3- { e ¥ i
| IEJ099I |14 | FQUOTE | | IEJ148I|12 | RENTER/ENTER, SWROOT |
L 4 iR d] J
v T T 1 - T -~ 1
|IEJ100I|14 | DO, READ/READWR | | IEJ149T |12 | COMALO [
t -4 $omo I fmmme 1
|IEJ1231I|15 | MOPUP | | IEJ1501 {12 | ALOC |
L —t— +____ ___‘| I,]] 4
r T T A
| IEJ1241|15 | COMMA | | IEJ159I}15 | MOPUP |
t S pommee { e |
{IEJ1251|15 | DO, BEGIO | | IEJ160I|1t | INTCCN |
b P] _.| U 4 —_— - 4
r T T h)
{IEJ1261|15 | CKARG | | IEJ160I |15 | coMMA |
[R ———— o} + _____ ___{ ‘, ______________ |
T T h
{IEJ1271|12 | COMALO, ALOC | | IEJ1611|12 | EXTCOM |
L P +__ —— Il — 1

r 1 T

|IEJ127I{15 | PRESCN, UMINUS, UPLUS, | | IEJ1621I|10D,10E| CLASS

| | | FOSCAN | - + 4

F + + i | IEJ163I|10D,10E| LITCON i
| IEJ1281I|15 | LFTPRN | } et 4
t + 4 4 | IEJ1641|10E | CONT/RETURN |
|IEJ1291I]15 | TYPE | } } 4 .|
8 + 4 4 | IEJ164I 14 | FORMAT |
| IEJ130I[15 | coMMA | - } + -
8 + 4 - i |IEJ1661|10D,10E| EOSR, DO, FUNCT,SUBRUT |
|IEJ1311|15 | INLIN1 |l bt 4
! + + - | IEJ1661 |14 | READ/READWR [
|IEJ132I|15 | LABEL] - + —_— .|
t —4-- + | |IEJ167I |14 | LINECK |
|IEJ1331|15 | EQUALS | t + -

F —-— + -4 | IEJ1681{10D,10E| EOSR

| IEJ1351I|15 | COMMA, TYPE | — +

b + + ¥ | IEJ1691 10D | DIMSUB [
|IEJ1361{15 | LAB | p————————— x|
t + + -4 | IEJ169I|15 | COMMA |
| IEJ137I(15 | CoMMA, TYPE, RTPRN, i _— it 4 4
| | | FOSCAN [| IEJ1711|10D,10E| EOSR [
b ¢ ¢ —-{ $ 1 4
[IEJ1391I|15 | COMMA i | IEJ171I {1t | RPAREN |
b ¥ { 4 { - i
|IEJ140I|15 | FOSCAN | | IEJ1721I|10E | ASF |
p=====t 1 -4t e .
|IEJ141I|15 | COMMA { | IEJ173I|10E | ARITH |
b ¢ . T et 4 :
| IEJ142I|15 | DO, BEGIO [| IEJ1741 |15 | EQUALS, LFTPRN, INARG, |
k + +- 1 1 | | TYPE I
L} T 4

| IEJ1431{15 | EQUALS | t + + 4
b 4 } 4 | IEJ175I |18 | LABEL i
|IEJ1441}15 | ARTHIF | L 4 -1 4
! } } :

|IEJ1421}12 | EXTCOM |

——— + —-

| IEJ145T1] 20 | PHEND | STATEMENT/EXPRESSION PROCESSING

! 1 1 d

v T T |

|IEJ1431(12 | COMALO, RENTER/ENTER, |

| | | SWROOT | Table 33 indicates the routine/ sukrou-
b + +-- - tine responsible for the processing of the
| IEJ1471|12 | EQUIVP | statement/expressicn under consideration,
L 4 1 J

134

and the phase in which it appears.

Table 33.

Statement/Expression Processing

r - =TT T T - m T T A
|Statement/ | Phase | Phase |Phase | Phase | Phase | Phase | Phase |
|Expression] 10D/10E | 12 | 14 | 15 | 20 i 25 | 30
——m e 1 1 1 ¢ t ¥ } 1
|Arithmetic Expres- | | | | | | | |
|sion or statement |ARITH (E) | |PASSON|FOSCAN {ARITH |RXGEN | |
e 1 e -+ e . + -1
| I | | | | FUNGEN/ | I
| FUNCTION Call | ARITH (E) |LDCN |PASSON|FOSCAN |CALSEQ |EREXIT | |
L 1 e e e oo 1 4 ———— 1 1 d
r T T T T T T 1
,				FOSCAN,			
Subscripted	{		MVSBXX/				
Variable	suBs (E)	SSCK	PASSON	MVSERX	SUBVP	SAOP, AOP	
[N —— 4 3 B I + ____+ + 4							
r T T T T T 1							
SF definition and				ASFDEF,			
expansion	ASF (E)	LDCN	ASF	FOSCAN	ARITH	ASFEXP	[
i — —— 4 P I U	1 4						
r + + T + + T T 1							
Statement Number]				
Definitions	CLASS (E)	ASSNBL	LABEL	LABEL	LABEL	LABEL	
L 1 } L] —d o~ —— 1 1 4							
r T T T T T 1							
SF call	ARITH (E)	LDCN	PASSON	FOSCAN	CALSEQ	ASFUSE	
L 4 4] i oL [+ 4 ¥							
r T T T T a							
	BKSP/REWIND]		
BACKSPACE	END/ENDFIL (E)		BSPREF	D02	ESDRID	RCWRT	
t $ $ $ -4--- -- ¢ 1 i							
	{			CALSEQ,	FUNGEN/		
cALL	CALL (E)	LDCN	PASSON	FOSCAN	IFCALL	EREXIT	[
—————— ¥ ¥ t -1 p———t ¢ 4							
COMMON	COMMON (D)	COMAL	[[I		
L 1 1 1 ———i -] _{							
r T T T T T							
Comgputed GOTO	Go (B)		CGOTO	CGOTO	COGOTO	CGOTO	
pmmmm e - 1= 1 1 1 4 ¥ ¥ 1							
	CONT	I				I	
CONTINUE	RETURN (E)		SKIP	SKIP			I
L i [l 4 - 1 4 3 4							
r - T T T T T T T 1							
DIMENSION	DIM (D)						[
L 4 1 [-4 +____	L 4						
v 1 T T T T T a							
			I		Do1,	I	
DO	DO (E)		DO {DO	po	ENDDO		
L 1 d i 1 +__ 4 1 4							
r T T T T T T]							
	INTGER/ (D)						
DOUBLE PRECISION	READ/DOUBLE	DPALOC					[
1 ——— e 1 N I B 4 + 4 4							
r T T T T T 1							
[BKSP/REWIND/					I I	
END	END/ENDFIL (E)		END	MOPUP	PHEND	END	ENDCRD
L ———t 4 4 -t L 4 1 5							
r T T T T T T T a							
	BKSP/REWIND/					i I	
ENDFILE	END/ENDFIL (E)		BSPREF	DO2	ESDRLD	RCWRT	[
1 4 4 i I —— 1 1 iR J							
T T v T T T T Ll							
EQUIVALENCE	EQUIV (D)	EQUIVP				I I	
L 4] ! o} 1 4 1 _.‘							
r T) T L) T T T							
EXTERNAL	EXTERN (D)	LDCN		i i i I			
L 1] } -t +_______+ __+_ 4							
r L 1 1 V h							
FORMAT	FORMAT (D,E)		FORMAT				
IR [LR 1 ——— 4 1 — L 4							
r - T T T T T T T 1							
i	FUNCT/SUBRUT		i i		I		
FUNCTION	(D)	LDCN	SUBFUN	FHDR		SUBRUT	
L 4 4 L 4 4 4 1 y							
1 T T T T T T T 1							
Go	GO (8)		ENDOCK	GOTO		TRGEN	[
L L i 1 1 J— } 1 _.‘							
v T T T T T T T							
IF	IF (E)		ENDOCK	FOSCAN	IFCALL	ARITHI I	
L (1 [l 4 iy + Il d						
r T T T T T T a							
			I	FUNGEN/			
In-line Functions	ARITH (E)	LDCN	PASSON	FOSCAN	CKCOD	EREXIT i	
L — 4 1 1 i L 4 L J
(Continued)

Appendix I:

Diagnostic Messages and Statement/Expression Processing

135

Table 33. Staterent/Expression Processing (Continued)

r T T T k3 T T 1 R]
| Statement/ | Phase |Phase |{Phase | Phase | Phase | Phase | Phase
|Expression | 10D/10E | 12 | 14 | 15 | 20 | 25 | 30 i
L 4 [—— 4 —— e e L ! d
[3 T T + T + T T |
| | INTGER/ | [| | | | |
| INTEGER |REAL/DOUBLE (D) |SALO | | | | | |
L] 1 1 + +_______... i 4
L} T T T T b |
| PAUSE | STOP/PAUSE (E) | |PAUSE |DO2 i | STOP/PAUSE|]
I { 4 { 3 1= $ $ {
| | | | | |READ, |RDWRT/ | |
| READ |READ/WRITE (E)| {READ |DO2 JLIST | IOLIST | |
L PRI ! [d 4 i d
2 T 1 1 T T + T 1
| | INTGER/ | | | | | | |
|REAL | REAL/DOUBLE (D) |SALO | | | | | |
t -1 1 e . -—-4 1
| | CONT | | | | | |
| RETURN | RETURN (E) | | RETURN | SKIP | | RETURN | |
b ¢ 1 L S } 1
| | BKSP/REWIND/ | | | | | |
| REWIND | END/ENDFIL (E) | |BSPREF | DO2 | ESDRLD | RDWRT | |
b 4 L — - 1 e 1
| sSTOP | STOP/PAUSE (E) | |STOP |DO2 i | STOP/PAUSE | |
L 1 1 LN 1 PN 1 4 -
r T T T T + T T “
| | FUNCT/SUBRUT | | | I | [|
| SUBROUTINE | (D) |LDCN | SUBFUN|DO2 | | SUBRUT | I
— + t ommmmmt - ¥ e 1
| | | | | | | RDWRT/ | |
|WRITE | READ/WRITE (E) | | READWR | DO2 |LIST |IOLIST | [
L L L L 4 i O & L J

136

The amount of main storage allocated to
the compiler depends on whether a SPACE or
a PRFRM compilation is being performed.

FOR SPACE COMPILATICNS

For SPACE compilations, the

requires main storage for:

compiler

s Load modules (phases, interludes, print
tuffer, and interface).

APPENDIX J: MAIN STORAGE ALLOCATION

contiguous only fcr each control section.
Figures 47 through 53 reflect the main
storage allocaticn associated with each

successive rhase/interlude as it performs
its functions, when only a minimal amount
of storage (15K bytes, where K = 1024) is
availakle for compilation.

When the main storage allocated tc the
compiler (specified in the SIZE option) is
greater than 15K kytes, the internal text
buf fers may be interspersed within the area
occugpied by the dictionary and the overflow

table. In this case, there need be no
®» Resident tables (dictionary, overflow relationship between the various areas
table, SEGMAL). required by the compiler.
* Internal text buffers.
These figures are schematics showing the
¢ BSAM I/0 routines. main storage allocated; proportional sizes
within the diagrams do not necessarily
The main storage required by each indicate proporticnal amounts of main stor-
phase/interlude of the compiler need be age.
32K, 1 32K 1+ 32Ky 1
| INTERFACE MODULE | | INTERFACE MOLCULE | | INTERFACE MODULE]
L 4 L ____‘ L __‘
r 1 r r
| PRINT BUFFER MODULE | | PRINT BUFFER MODULE | | PRINT BUFFER MODULE |
L 4 L i L 4
r - 1 r - 1 r 1
| BSAM ROUTINES | | BSAM ROUTINES | | BSAM ROUTINES
b—-- - I i
PHASE 7 PHASE 7 | | PHASE 7 |
d i |
== 1 b— 1
| AVAILABLE MAIN | | AVAILABLE MAIN i | BVAILABLE MAIN |
| STORAGE | | STORAGE | | STORAGE [
| I i !
| | | PHASE 1 | | TRANSIENT WORK AREA |
! | | | b i
[4 | | | DICTIONARY |
| | k - R i k i
| PHASE 1 | | OVERFLOW TABLE, SEGMAL | | OVERFLOW TABLE, SEGMAL, |
I | b ——== i k i
| | | 4 INTERNAL TEXT BUFFERS| | 4 INTERNAL TEXT BUFFERS|
17K} { 17k} —— {1 17k} i
I I | | | |
| | | I | I
| | | | | |
| | 1 | | |
| RESIDENT | | RESIDENT | | RESIDENT
| CONTROL | | CONTROL | | CONTROL
| PROGRAM | | PROGRAM | | PROGRAM
I | | | I |
| | | | | |
| | | | | |
| | | | |]
OL ¥ | ol i | Ol "}
Figure 47. End of Phase 1 Figure 48. End of Phase 1 Figure 49. End of Phase 7

(initial entry)

(subsequent entries)

Aprpendix J:

Main Storage Allocation 137

138

17K

0

Figure 50.

32K

17K

(=]

Figure 52.

[o e e e e . o . et o e Sy i Gy e e e e e S e Sy i g s

INTERFACE MODULE

PRINT BUFFER MODULE

TRANSIENT WORK AREA

PHASE 10D,
PHASE 10E,

.
|
L
L 3
|
t
| BSAM ROUTINES
t
|
L
!
|
| INTERLUDE 10E

OVERFLCW TABLE, SEGMAL

4 INTERNAL TEXT BUFFERS

RESIDENT
CCNTROL
PROGRAM

| I -——

e N S WS S W WA S

Phases 10D and 10E,
and Interlude 10E

INTERFACE MODULE

PRINT BUFFER MODULE

BSAM ROUTINES

TRANSIENT WORK AREA

PHASE 15,
INTERLUDE 15

OVERFLOW TABLE, SEGMAL

4 INTERNAL TEXT BUFFERS

RESIDENT
CONTROL
PROGRAM

b o s s e . G, s . s kit e s o, e, e . e e v bt s e, . vkt o, cad

lude 15

Phase 15 and Inter-

17K

0

INTERFACE MODULE

PRINT BUFFER MODULE

r
|
F
!
L
r
|

BSAM ROUTINES

b

TRANSIENT WORK AREA
L

PHASE 12,PHASE 14
INTERLUDE 14

DICTIONARY

- ———r

OVERFLOW TABLE, SEGMAL

b

4 INTERNAL TEXT BUFFERS

[
|

RESIDENT
CONTROL
PROGRAM

|
|
I
|
I
|
|
L

b e e i e e s et e e s e i s s e bl . e, e e e, e, . e ctrn, i e)

Figure 51. Phases 12 and
and Interlude 14

32K

17K

(=]

[e e e e e e e g g oy e e e g e ey e ey o e e

14,

INTERFACE MODULE

PRINT BUFFER MODULE

BSAM ROUTINES

TRANSIENT WORK AREA

PHASE 20,
PHASE 25,
PHASE 30

OVERFLOW TABLE, SEGMAL

4 INTERNAL TEXT BUFFERS

RESIDENT
CONTROL
PROGRAM

b e e . i e s . e s e, s, s, s b, e, . . s, e cndh o b s b, e

Figure 53. Phases 20, 25,

30

and

FOR PRFRM COMPILATIONS

For PRFRM comgpilations, the compiler
requires main storage for:

e Ioad modules (phases, interface, print
kuffer, and perforrance).

e Resident tables (dictionary, overflow
table, and SEGMAL).

e Internal text buffers.

BSAM I/0 routines.

e Block/deblock buffers if blocking is
specified.

The main storage required by any given
rhase of the corpiler need be contiguous
only for each control section within that
phase. Figure 54 reflects the main storage
allocation for +the duration of a PRFRM
compilation, when only a minimal amount of
main storage (19K kytes, where K=1024) is
available for compilation.

When the main storage allocated to the
compiler (specified in the SIZE option) is
greater than 19K bytes, the internal text
kuffers may be interspersed within the area
occupied by the dictionary and the overflow
table. In this case, there mneed be no
relationship arong the various areas
required by the corpiler.

Figure 54 is a schematic showing the
main storage allocated; proportional sizes
within the diagram do not necessarily indi-
cate proportional amounts of main storage.

36K

| INTERFACE MODULE

FRINT BUFFER MODULE

PERFORMANCE MCDULE

BSAM ROUTINES

o e e

PHASE

TRANSIENT WORK AREA

1 PHASE 7,

I
PHASE 10D, PHASE 10E,
PHASE 12, PHASE 14,
PHASE 15, PHASE 20,
PHASE 25, OR PHASE 30

I
t
I
b
|
'L_
|
I
|
|
|
|
|
F
|
T
| TABLE,
F

4 INTERNALI TEXT BUFFERS

DICTIONARY, OVERFLOW

AND SEGMAL

17K

BLOCK/DEBLOCK BUFFERS (IF
BLOCKING 1S SPECIFIED)

|
I.
|
|
|l,
|
|
!
I
|
|
|
L

0

RESIDENT
CONTROL
PROGRAM

b e e e e e e i i e s i e s s e e i e c—— e ————

Figure 54.

Appendix J:

Main Storage Allocation
PRFRM Compilation

Main Storage Allocation

for

]

139

APPENDIX K: COMMUNICATION AREA (FCOMM)

The communication area is a central
gathering area used to communicate neces-
sary information between the various phases
of +the compiler. The communication area,
as a portion of the interface module, is
resident throughout the compilation.

Various bits in the cormunication area
are examined by the rhases of the compiler.

The status of these Lits determines the
following:
¢ Cptions specified by the source pro-
granmer.

e Specific action to be taken by a phase.

If the bit in question is a 0, the
opticn has not Leen specified, or the
acticn is not to be taken; if the bit is a

1, the option has been specified, or the
acticn is to be taken.

Several entries in the communication
area are equated to the addresses of other
entries in the communication area used
during earlier rhases. Equating the
entries keeps the size of the communication
area tc a minimum.

The communicaticn area is assemkled as a

DSECT (dummy section) within each phase.
This allows the phases to symbolically
address the entries in the communication

area without the communication area actual-
ly residing in each phase.

Takle 34 indicates the format and organ-
ization of the communication area.

Table 34. Communicaticn Area
r .= T T - 1
| | | |
| Entry | Size | Meaning |
pomrmme et -—-1 1
FCOMM	DS XL	BITO SOURCE *
		BIT1 DECK *
i	BIT2 MAP *	
		BIT3 ADJUST * i
I		BITY PRFRM *
I		BITS 5-6 00 NOLOAD*
	I 11 1OAD #	
		BIT7 BCD VERSION OF SCODE REQUESTED # i
		BIT8 NAME PARAMETER EXISTED
		BITS 9-10 00 MAIN PROGRAM
		10 SUBROUTINE SUBPROGRAM
	i 11 FUNCTION SUBPROGRAM	
I		BIT11 FUNCTION NAME LDEFINED
		BIT12 OBJECT MODULE CALLS AN EXTERNAL S/P
		BIT13 COMMON AND EQUIVALENCE TEXT ALL IN STORAGE I
		BIT14 LAST COMPILE OF THIS JOB STEP-PH 10E/1
		BIT1S ERROR IN ANY CCMPILE OF A BATCH RUN
I		BIT16 WARNING MESSAGES
I	BIT17 ERROR MESSAGES	
		BIT18 MESSAGE IN CURRENT STATEMENT-PH 10D/10E
I		BIT19 WARNING IN ANY COMPILE OF A BATCH RUN i
[I	BIT20 ABORT COMPILATICN [
		BIT21 ALL INTERNAL TEXT IN STORAGE I
		BIT22 ONE INTERNAIL TEXT RECORD-PH 10D/10E
]	OBJ. MOD. USES A SPILL BASE REG-PH 12/25	
		BRANCH LIST TEXT NOT ALL IN STORAGE-PH 25/30
		BIT23 OBJECT LISTING [
		BIT24 OTHER THAN FIRST COMPILE
[[BIT25 COMPILATION RESTARTED	
		BIT26 INVALID OPTION(S) IN 'PARM' FIELL
		BIT27 'NAME' OPTICN TOO LONG-TRUNCATED
] | |BITS28-31 SPARE [
L 1 1. J
(Continued)

140

Table 34. Communication Area (Continued)

| '| T o i
| Entry | Size | Meaning |
b 1 1 - - 1
FSIZE	IDS F	BYTES OF STORAGE REQUESTED FOR COMPILER*
FDATE	DS CL5	YEAR (2 DIGITS), DAY (3 DIGITS)
FLINELNG	DS X	OBJECT PROGRAM PRINT LINE LENGTH *
FINDEX	DS H	DISPLACEMENT FROM FCOMM TC FDECBIN
FMAXLINE	DS H	MAXINUM NUMBER OF LINES CN LISTING PAGE
FCURLINE	DS H	CURRENT LINE ON LISTING PAGE
FIEJF	DS CL4	FORTRAN E INTERNAL COMPONENT CODE - IEJF
FPHASE	DS CLU	ENTRY POINT OF PHASE IN CCNTRCL)
FDMRRDCD	DS X	HI-ORDER BYTE OF REREAD ITEM IN CLOSE LIST
FDMLSTCD	DS X	HEI-ORDER BYTE OF IAST ITEM IN CLOSE LIST
FPRTCTRL	DS 2H	BRANCH TO PRINT CONTROL ROUTINE
F L { Ee— !		
THE CONTENTS OF THE	FOR SPACE	FOR PRFRM
NEXT 4 FIELDS DEPENDS	COMPILATIONS -	COMPILATIONS -
ON WHETHER A SPACE OR A	[
PRFRM COMPILATION IS	i	
BEING PERFORMED.		
T $ rmm o e 1		
FIORTN	DS 2H	B SIORTN
FNEXT	DS 2H	B SNEXT
IDS H	(NOT USED)	BR 13 I
FPRFRMDL	DS A	ZERO
prmmm i -t L !		
FAGROEND	DS A	ADDRESS OF (END OF INTERFACE MODULE + ONE)
FSAVADDR	{DS A	ADDRESS OF CONTROL PROGRAM SAVE AREA
FTXTBFSZ	DS H	SIZE OF INTERNAL TEXT BUFFERS
FTXTPTR	DS H	ADDR. OF NEXT INT. TEXT RCD.-PH. 10D/E,12/14
FTXTBFA1	{DS A	ADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT1
FTXTBFA2	DS A	ADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT1
FTXTBFB1i{DS A	ADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT2	
FTXTBFB2	DS A	ADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT2
FPRTIBUF1	{DS A	ADDRESS OF FIRST PRINT BUFFER - PHASE 1/14
FPRTBUF2	DS A	ADDRESS OF SECOND PRINT BUFFER - PHASE 1/14
FINITBFS	DS G4A	INITIAL TEXT BUFFER POINTERS
FDICTNDX	DS A	ADDRESS OF DICTIONARY INDEX - PHASE 7/12
FOVFLNDX	DS A	ADDRESS OF OVERFLOW INDEX
FDICTBLK	DS A	DICT. BLOCK NOW BEING BUILT - PH. 10D/E
FOVFLBLK	DS A	OVFL. BLOCK NOW BEING BUILT - PH. 10D/E
FDICTNXT	DS A	DICT. ENTRY NEXT TO BE BUILT - PH. 10D/E
FOVFLNXT	DS A {OVFL. ENTRY NEXT TO BE BUILT - PH. 10D/1%4	
FISNEX1	{DS F	ISN OF FIRST EXECUTABLE-PHASE 10D/E
FOBJPROG	DS CL6	[NAME OF OBJECT PROGRAM
FOBJREGS	DS X	BIT 3, EXTERNAL FUNCTICN HAS BEEN CALLED
		BITS 4-7, LOWEST INDEX REGISTER IN CBJ. PROG.
FASFCNT	DS X	COUNT OF SF'S IN OBJECT PROGRAM
FDOCOUNT	DS H	NUMBER OF DO STATEMENTS
	Ibs H	SPARE
L] L J
(Continued)

Appendix K: Communicaticn Area (FCOMM) 141

Takble 34. Communicaticn Area (Continued)

r k)

| FCOMSIZE | EQU
| FALSIZE |EQU
| FBLSIZE |EQU
|FBLSTRT |EQU
| FASFDOBL | EQU
| FBVSTRT |EQU
| FOBISTRT | EQU
| FLOCCTR |EQU
| FFNCADDR | EQU
|FIBCOM |EQU
| FOBJERR |EQU
| FDECKSEQ | EQU
| FESDSEQ |EQU
| FALSTRT |DS
| FDATEMP |DS
| FDEFILCT|DS
|FDIOCS |EQU
|FPATCH |DS
| FPTCHTBL | DS
| FPTCHPTR| DS
| FSORSYM1 | DS
| FSORSYM2 | DS
L 1

T
FDICTBLK |SIZE OF OBJECT PROGRAM COMMON - PH. 12/25
FDICTBLK+2|SIZE OF OBJ. PROG. ARGUMENT LIST - PH. 15720
FOVFLBLK |SIZE OF OBJ. PROG. BRANCH ILIST -~ PH. 12/25
FOVFLBLK+2|ADDR. OF OBJ. PROG. BRANCH LIST - PH. 12/25
FOVFLNXT+2|ADDRESS OF ASF/DO BRANCH 1IST - PH. 20/25
FDICTNXT |ADDR. OF OBJ. PROG. BASE VAL. LIST - PH. 12/25
FDICTNXT+2|STARTING ADDR. OF OBJECT PROGRAM - PH. 12/25
FISNEX1 | LOCATION COUNTER FOR OBJ. PROG. - PH. 12/25
FDICTBLK+2|ADDRESS OF RESULT (FUNCTION S/P) - PH. 14,15
FOVFLNXT |ADDRESS OF IBCOM - PHASE 20/25

FDICTBLK+2 |ADDR. OF OBJ. PROG. ERROR RTNE. -~ PH. 20/25
FDICTNDX |OBJECT PROGRAM DECK SEQUENCE NUMBER - PH. 12/25
FDICTNDX+2 |OBJECT PROGRAM ESD SEQUENCE NUMBER - PH. 12/20

F | DSRN ARGUMENT LIST ADDRESS
F |ADDRESS OF DIRECT ACCESS I/O TEMPORARY AREA
F |'DEFINE FILE' DSRN COUNT - PH. 10D/20
FDEFILCT |ADDRESS OF DIOCS - PH. 20/25
2H |BRANCH TO PATCH ROUTINE IN INTERFACE MODULE
A | ADDRESS OF PATCH TABLE
A |PATCH TABLE ENTRY NEXT TO BE POSTED
A | ADDRESS OF SORSYM TABLE
A | SORSYM TABLE ENTRY NEXT TO BE BUILT

L

b
|*Default values for these compiler options may be specified by the user during the
| system generation prccess via the FORTRAN macro-instruction.
| assumed if the corresponding parameters in +the PARM field of the
| statement are not included.
L

The default values are

b e s e e e e e e e e e e e e ———— —— e e e e e e

142

Phase 10D and Phase 10E convert each
FORTRAN source statement into a form
(intermediate text) usable to subsequent
phases of the compiler. Intermediate text
is developed by scanning the source state-
ments from left-to-right and by construct-
ing cne-word intermediate text entries for
the source text contained in the state-
ments.

Phase 10D scans the declarative state-
ments in the source module, and creates
intermediate text for thcse statements.

When Phase 10D encounters either the first
statement function or the first executable
statement, control 1is passed to Phase 10E
via the interface module. Phase 10E con-
tinues the scan of the source module and
creates intermediate text for statement
functions and executable statements.

As source statements are scanned,
entries are made to the dictionary and
overflow table. The information in the

dictionary and overflow table supplements
the intermediate text in the generation of
machine language instructions by subsequent
phases of the compiler. This information
is associated with the intermediate text
entries by means of pointers that reside in
the text entries.

Each source statement of the source
module consists of one or more card images.
To scan source statements, each card image
of the source module is first read into one
of two I/O0 buffers in the print buffer
module (IEJFAKAO). The double-buffer
scheme allows for overlapping the scanning
of a card image in one buffer with the
reading of the next card image of the
source module into the other buffer. If
the SOURCE option is specified, the 1I/0
buffers are used to print a listing of the
source module.

In general, the processing of a source
statement is divided into three operations:
s Preliminary scan of the card image(s)
for the statement.
card

¢ Classification scan of the first

image for the statement.

s Reserved word or arithmetic scan of the
card image(s) for the statement, which
scans the source text of the statement.
(The reserved word or arithmetic scan
also creates intermediate text.)

APPENDIX L: SOURCE STATEMENT SCAN

PRELIMINARY SCAN

The preliminary scan first determines
the address of the end of the source text
in the card image to be processed. This
address is obtained by examining the card
image from right-to-left in groups of four
bytes. The address of the last blank group
encountered is used as the ending address
of the card image. This address is used in
the reserved word or arithmetic scan of the
card image and indicates the point at which
the scan of the card image and the creation
of intermediate text for the card image is
to terminate. In the case of the last card
image for a statement, the ending address
indicates the end of the statement.

The preliminary scan then determines the
type of the card image to ke scanned. A
card image may correspond to the start of a
FORTRAN statement, the continuation of a
FORTRAN statement, or a user's comment.

If the card image corresponds to the
start of a FORTRAN statement, a unique
internal statement number is assigned to

the statement. This number is placed in
front of the card image in the buffer
containing that card image. Control is

then passed to the classification scan.

If the card image corresponds to a
continuation of a FORTRAN statement, a new
internal statement number is not assigned.
Control is immediately passed to the clas-
sificaticn scan.

If the card image corresponds to a
user's comment, no further processing is
required. The next card image of the
source module is read into the buffer that
contained the comments card image. The
address of the other buffer (previously
filled) is obtained from the communication
area, and scanning starts for the card
image in that buffer.

In each case, if the SOURCE option is
srecified the kuffer containing the card
image is first written onto the SYSPRINT
data set before any further processing.

CLASSIFICATION SCAN

The classification scan determines the
type (arithmetic or reserved word) of the
FORTRAN statement to be processed. The

Aprendix L: Source Statement Scan 143

first action taken by the classification
scan is to determine if a statement number
defines the statement under consideration.
If a statement numker is associated with
the statement, an overflow table entry for
that statement number is created.

The next item of the source statement is
then obtained. If the item is a symbol,
control 1is passed to a routine that scans
arithmetic statements. If the item is a
reserved word (e.g., READ), control is
passed to the approrriate reserved word
routine. The arithmetic or reserved word
routine controls the scanning of the
remainder of the statement, and creates
intermediate text for the statement.

If the item is neither a symbol nor a
reserved word, the source statement in
question is invalid. Processing of that
statement is terminated, and processing of
the next statement of the source wodule
begins.

RESERVED WORD OR ARITHMETIC SCAN

The main function of the reserved word
or arithmetic scan is to scan the card
image(s) for each statement of the source
module. During this scan, dictionary and
overflow table entries are constructed, and
intermediate text entries are created. In
addition, each statement is examined for
correct use of the FORTRAN IV (E) language.

The reserved word or arithwetic scan is
performed by either a reserved word routine
or the arithmetic routine. A reserved word
routine exists for each of the reserved
word source statements. Certain reserved
word routines, namely those that process

statements that may contain arithmetic
expressions (e.g., IF and CALL statements)
and those that process statements that

contain I/0 lists (e.g., READ and WRITE
statements) pass control to the arithmetic
routine to complete the scanning of the
associated reserved word statements.

When the appropriate reserved word rou-
tine or the arithmetic routine receives
control, a left-to-right scan of the cur-
rent card image is then initiated. The
first operand of the card image is
obtained, and a check is made to determine
if a dictionary or overflow table entry has
previously been created for the operand.
If an entry has not been created, a dic-
tionary or overflow takle entry (depending
on the operand) is created and entered in
the appropriate resident table. Scanning
is resumed and the first operator of the
card image is obtained.

144

The intermediate text for each card
image is develored ky constructing inter-
mediate text entries for operator-operand
pairs as they are scanned by a reserved
word routine or the arithmetic routine. 1In
this context, cperator refers to commas,
parentheses, etc., as well as to arithmetic
operations (e.g., + and -). Operand reéfers
to variakles, constants, statement numbers,
data set reference nurbers, etc., that are
operated on.

The procedure of: (1) scanning operators
and orerands, (2) constructing dictionary
or overflow table entries when necessary
for the operands, and (3) developing inter-
mediate text entries for the operator-
operand pairs is repeated until the end of
the card image is recognized by the re-
served word or arithmetic scan.

When the address indicating the end of
the card image is recognized by the re-
served word or arithmetic scan, the next

card image of the source module is read
into the buffer that contained the card
image just processed. The address of the
other kuffer (previously filled) is
obtained from the communication area, and
processing starts for the card image in
that buffer.

When an entire source statement has been
scanned, a special intermediate text entry
indicating the end of the intermediate text
representation for a given statement is
generated and then written onto an inter-
mediate storage data set at the end of the

intermediate text rerresentation for the
staterent. This special text entry con-
tains the internal statement number

assigned to the statement by the prelimi-
nary scan section.

During the reserved word or arithmetic
scan, each card image is examined for
proper use of the FORTRAN IV (E) language.
The format of the card image is checked to
see if the statement associated with the
card image has keen coded properly by the
source prograrnrer.

If a serious errxor is encountered, scan-
ning of the statement associated with the
card image is terminated. An intermediate
text word indicating the end of the inter-
mediate text representation for the state-
ment is generated and then written onto an
intermediate storage data set. This text
word also indicates that an error was
enccuntered in the prccessing of the state-
ment. An interrediate text word, rep-
resenting the erroxr, which contains a num-
ber corresponding to the specific error
detected, is generated and then written
onto the intermediate storage data set at
the end of the intermediate text represen-

taticn for the statement in which the error
was detected.

If an error is encountered that is not
serious enough to terminate the scan of a
statement, an intermediate text word rep-
resenting a warning is generated. This
word is saved and scanning is resumed.
When the scan of the statement is terminat-
ed (either when the end of the statement is
recognized or when a serious error is
encountered), the warning text word is
written onto the intermediate storage data
set immediately following the text word
that indicates the end of the intermediate

text rerresentation for the statement and
any intermediate text words generated for
sericus errors. (A maximum of four warning
text words per statement may be saved and
then written onto the intermediate storage
data set. If rore than four warning condi-
tions are encountered, an intermediate text
word representing an error is generated and
scanning of the statement is terminated.)

statement scan for the fol-
illustrated in

The source
lowing READ statement is
Chart 19.

READ (5,10) A,B(1),(C(D),I=1,10),D

Arrendix L: Source Statement Scan 145

Chart 19.

ERRER
*19 *
* AL¥

* %

READ Statement Scan

Logic

EARE

HEER

READ v v
HREERAL IR EN HREERADHNAREI IR RN HRAERATEE NN R RE
* - * GETWD * CSORN *
* SET UP * Pt *
* READ BCD * >* GET * ENTER *
* ADJ CODE * * OPERATOR * | * VARIABLE IN
* * * * * DICTIONARY *
v P eI Y YA
L PAREN R
- *
* F§ #*
* *
E22 2
v
v *,
!..l.ﬂzi’&”*’ﬁll B3® “x. HHRRRBAINR RN RNRN q*oanasigonlin&&w
GETWD * ¥ *e * suB * PUTX
&-&-&-&-4-*—&-*-« «% VARIABLE #., YES e e o e ot B 2 2 Q—{—i—l-‘-l—l—l-i
* GET DATA SET * %4 DIMENSIONED . >* CE: W ¥ ENTER *
* REFERENCE * - o * UBSCRIPT * * INTO *
* NUMBER * *e D * VARIABLE * * TEXT *
P e 2 *e o® e e T T PR e e T T Y
#* NO
LA a3
* -
>* K2 *
* »
*REE
v st
e cs *. HNRERCSE RN NN
* CSORN * -t . *
PR Dt B Bt el L s Bt g - ¥ S *, YES R Bt Bt B St St Bt S
* NTER * * o OPERATOR - ¥ >* END OF *
* DSRN IN * *eEND MARK o#% A * STATEMENT *
* DICTIONARY * *a o ¥ # PROCESSING *
E2 2222222 22222221 *y ¥ EZ 22 s a2 2 222 2]
* NO
v
"
* *
v DO4 v * K2 * CLASS
I'*ilD]ll&l!&**&* D3§il{ii**{' » -
“GETWD * GETWD *E wn:qusl&&&****&
’CHANGE ADJ CODE‘ R PAREN ‘—'—*—*—*-*-*-*-* e e e W "‘-*-*—* * START
* T0 UNFORMATTED * GET DPERATOR # * GET DO *< * NEXT '
* READ * » * PARAMETER - * STATEMENT *
l * * * * FRRHRR RN
COMMA
v v
€1 2 EXXH RARREETHRER R REEEN
* PUTX * * PUTX * * SORN *
e W B e W e W e W P St B S I S et Tt LR S P ot S ot S8 Bt 3
* ENTER ADJ * * ENTER ADJ * * ENTER *
* CODE INTO * * CODE INTO * * PARAMETER IN #*
* TEXT * * TEXT * #* DICTIONARY * L2232
P T) EER » -
* F5 #
* *
XEeE
v
*RER
* *
* K2 # v v v
* * F2u# F3 i"l'Fslllillilll
N * GETWD * * PUTX * ERROR
B e e e o B e e o P e n-’ i—%—ﬁ-*-{—l-!
* GET FORMAT * * ENTER * —— GENERATE *
* STATEMENT * * PARAMETER * # APPROPRIATE *
* NUMBER * * INTO TEXT * # ERROR TEXT
;4»;;&&:;5*»#»0»*
v v
ERRERGDHERERRRE RN RRERRGTIN RN RRN LS
* LABLU * GETW *
e ot B e el
* ENTER * * GET *
* STMT NUMBER # * OPERATOR *
IN OVERFL TBL #* *
ey e e HRERRAENRBER RN AW
v
v ot
I P e e H3 o
(T2 * GETWD * o *e
* #OTHER¥—#— %= oo Wk YES «% THREE #,
* F5 *< * GET * PARAMETERS %
* * * OPERATOR » . o*
RN * *q -t
TR NN NN e ¥
R PAREN * NO
v
v e
HREEJOHERERB R RN J3 *. wfu¢444;aﬁan¢in&¢
* PUTX * o* PUTX
B e e e e e T o 1S ; »—*-u-u-u - &-{
* ENTER PTR TO * *. OPERATOR >* *
#* STMT NUMBER # %o R PAREN * OPEﬂATDR *
N * INTO TEXT * . o * INTQ TEXT *
* * P I T TR T R T Y S e oM PEY T T IR T 2 2
* K2 * * NO
* * R
XREN * »* <
* K2 *—>
* *
nE
ARITH10 v
K1 * K2 HRERECGRRRRN NN RN
b *® * GETWD * T * PUTX *
* SET UP . - zERQl—Q—k—i-ﬂ e * ™0 B T e e R el
* ADJ CODE *< GET * PARAMETERS >% ENTER IMMED *
* FOR OPERATOR % ‘ NEXT * - - * PARAMETER *
* * * WOR * *o ¥ * OF ONE *
EREERRERIRRRIRE RN HRRREE AT RRAA AR R *e o¥ Pt e e e T2
NON=ZERO * NO
v v v
XN RN *REw
* * * * *
146 * A3 * * F5 * * K2 *
* * * * * *
E2 TS ERER T2

a(xxxx): Indicates the address of the sym-
bol within parentheses.

adjective code field: A field of an inter-
nmediate text entry that contains either an
adjective code assigned by the compiler or
an actual machine operation code.

allocation table: Used in Phase 7 to deter-
mine the amount of additional mrain storage
required by the compiler.

argument list: A 1list containing the
addresses of arguments constructed when an
adjective code indicating a «call to a
subprogram or statement function is detect-
ed.

arqument list table: Used at object-time to
provide the starting address of the argu-
ment 1list for each sukprogram or statement
function called.

base value table: Used at
obtain Lkase register values.

object-time to

BIDL table: Provides information necessary
for transferring ccntrcl from one phase to
the next for PRFRM comrilations.

blocking table: Provides information neces-
sary to deblock compiler input and to block
compiler output for PRFRM compilations.

bound variable: An integer variable in a
subscript expression that is redefined.

kranch list table for SFs and DOs: Used at
object-time either by the instructions gen-
erated to reference SF expansions or by the
instructions generated to control the iter-
ation of DO 1loops. '

branch list table for referenced statement
numbers : Used at object-time Lty the
instructions generated tc branch to execu-
table statements.

CDL: A portion of the array displacement
for subscripted variakles.

COMMCN text: An internal format used to
transmit the informaticn in a COMMON source
statement to Phase 12.

communication area: A central gathering
area used to communicate information
between the various phases of the compiler.

declarative statement: Any one of the fol-
lowing statements: COMMON, DIMENSION, EQUI-
VALENCE, INTEGER, REAL, DOUBLE PRECISION,

GLOSSARY

EXTERNAL, FORMAT, and SUBROUTINE or FUNC-

TION.

dicticnary: A resident table of the compil-
er used to stcre infcrmation about symbols

used in the source statements. For PRFRM
compilations, the dictionary resides in
main storage thrcughcut the compilation;
for SPACE corpilaticns, the dictionary

resides
4.

in main storage only through Phase

dictionary index: Consists of pointers to
the first entries in the varicus chains
that constitute the dictionary.

end-cf-statement indicator: An adjective
ccde that signals the end of a particular
statement to a processing phase.

epilcg table: Used during Phase 25 when
generating the instructions that return the
value of variables wused as parameters to
the calling program.

EQUIVALENCE takle: Used by the routines
that assign addresses for EQUIVALENCE
entries.

An internal format used
EQUIVAL-

EQUIVALENCE text:
to transmit the inforwation in an
ENCE source statement to Phase 12.

error: Incorrect usage of the FORTRAN lan-
guage that may force the end of compila-
tion.

ESD__card image: A card image containing an
external symbol that is defined or referred
to in the source module.

executable statement: A statement that
causes the corpiler to generate machine
instructions.

flush: A compile time I/0 request that
forces the current outrut buffer being used
for a klocked cutput data set to be writ-
ten.

forcing value: A value that indicates an
operator's relative position in the hierar-
chy cf operators. ‘

forcing value table: Used during Phase 15
processing to aid in the reordering of
intermediate text entries for arithmetic
expressions.

hierarchy of operators: Defines the order
in which operations must ke performed in an
arithretic expression.

Glossary 147

communications 1link
and the operating

interface module: The
between the corpiler
system.

index mapping table: Used during Phase 20
processing of subscript expressions to
maintain a record of all information perti-
nent to the subscript expression.

interlude: A compiler component that closes
and then reopens the various data sets used
by the compiler for SPACE compilations.
(Interludes do not perform source statement
processing.)

intermediate text: An internal rerresenta-
tion of the source statements that may
eventually ke converted to machine language
instructions.

internal staterxent number: A numker
assigned to each FORTRAN statement by the
compiler.

l1ist item: A variakle used in a READ or

WRITE statement.

load module: The output of the 1linkage
editcr; a program in a format suitakle for
loading into main storage for execution.

location counter: A counter used to
addresses.

assign

message address takle: Used during Phase 30
to aid in the generation of error and
warning messages.

message length table: Used during Phase 30
to aid in the generation of error and
warning messages.

message text table: Used during Phase 30 to
aid in the generation of error and warning
messages.

mode/type code field: A field used in the
dictionary and intermediate text denoting
the mode (real, integer, or double

precision) and type (variable, array, func-
tion or constant) of a symbol.

cbject module: The output of a single
execution of an assemkler or compiler,
which constitutes input to the 1linkage
editor.

offset: A calculated indexing factor wused
to find the correct element in an array for
a particular subscript expression.

operations table: A temporary storage area
used during Phase 15 processing in the
reordering of intermediate text entries for
arithmetic expressions.

A resident table that con-
subscript, and state-

overflow table:
tains all dimension,

148

ment nurber information within the source
module keing ccmpiled.

overflow table index: Consists of pointers
to the first entries in the various chains
that constitute the overflow table.

p(xxxx): Indicates a pointer to the infor-
mation (within +the rarentheses) as rep-
resented in the dictiocnary or the overflow

table.

patch table: Used to contain patch records
if the patch facility has been enakled and
if patch records precede the FORTRAN source
module tc be ccmpiled.

perfcrmance module: Processes compiler I1I/0
requests and end-of-phase requests for
PRFRNM corpilations. The rerformance module
alsc contains the blocking table and the
BLDI table.

phase: Performs compiler initialization or
actual source statement processing.

pointer field: The last two bytes of an
interrediate text word. It normally con-
tains a relative pointer to a dictionary or
overflow table entry.

print buffer module: Ccntains two I/O buf-
fers for SYSIN and SYSPRINT.

resident table: A tabkle that remains in
main storage throughout an entire compila-
tion or throughout a part of a compilation.
(The dictionary is resident only up to the
end cf Phase 14 fcr SPACE compilations.)

RID card image: Ccntains information about
an address constant used in the object
module.

routine displacement tables: Aid in the
location of reserved word processing rou-
tines in Phases 10D and 10E.

SEGMAL: A resident takle that contains the
beginning and ending address of each seg-
ment cf main storage assigned to the dic-
tionary and overflow table by Phase 7.

SF__numker: Assigned to each SF definition
enccuntered by Phase 14.
source module: A series of statements in
the symbolic language of an assembler or
corpiler, which constitutes the entire
input to a single execution of an assembler
or ccrmpiler.

subscript table: Temporary storage area
used for subscrirt text encountered during
the reordering of intermediate text words
by Phase 15.

The
computation

subscript optimization:
replacing the

process of
of a subscript

expression at each recurrence with a ref-
erence to its initial computation (that is,
to the register assigned to contain the
result of its initial computation).

SYSIN data set: The source module, which is
used as input to the ccmpiler.

SYSLIN data set:
irage form (if
specified).

The object mwodule in card
the LOAD option is

SYSUT1 data set: Used as a work data set by
the compiler to contain intermediate text.

SYSUT2 data_set:
the compiler to contain intermediate

Used as a wcrk data set by
text.

SYSPRINT _data set: The source module list-
ing (if the SOURCE ortion was sgpecified); a

storage map (if the MAP option was
specified); and a list of error and warning
wessages (if any).

SYSPUNCH data set: The object module in
card image form (if the DECK option was
specified).

SYS1.FORTLIB: A partitioned data set that
contains FORTRAN sukprograms (including
IHCFCOME and TIHCFIOSH in the form of lcad
modules.

SYS1.IINKLIB: A partitioned data set that
contains executable load modules, which can
be reached via the XCTL, ATTACH, LINK, and
LCOAD functions. The FORTRAN IV (E) compil-
er resides on the SYS1.LINKLIB.

TXT card image: A card image containing
either an instructicn of the object module
or data used in the okject module.

unit assignment table:
during rrocessing of
requests.

Used by IHCFIOSH
execution-time I/O

unit klocks: Used by IHCFIOSH during proc-
essing of exection time I/O requests.

warning: Incorrect usage of the FORTRAN
language that 1is not serious enough to

prevent executicn cf the object module.

Glossary 149

ABS in-line function
compile time, processing of 33-34
Address assignment 27-28
Address constant 13
Adjective code
definition of 92-93
forcing values of 32-33,78
replacement of 32-33,100-101
Adjective code field
in intermediate text 92-93
Allocation of storage
for argument list table 37
fcr kranch list takles 28-29,35
fcr compiler 22-23,88-90,137-139
Allocation table 76
AOP adjective code
in intermediate text 103
Argument list count 34,37
Argument list table
format of 108
generation of 37
use of 108
Argument list table entry
generaticn of RLD and TXT card images
for 37
Argument 1lists
creation of 34
Arithmetic expressions
generation of instructions for 38
processing of 32-34,135
reordering of 32-33,101-102
Arithmetic scan
of source statements 144-145
Arithmetic-type interruptions
object-time processing of 116
Array displacement
definition of 104
computation of 104-106
Array element 104-106
Array I/O list items
object-time processing of 110-113
Arrays
compile-time processing of
28,31,36,104-106
Assignment
of registers 33-34,100-101
of relative addresses 27-28
of storage to the comgiler
22-23,88-90,137-139

BACKSPACE statement
compile time processing of 31,135
okject-time implementation of 115,125
Base-displacement address
definition of 27-28
Base registers 39
Base value table
format of 108
generation of 39
generation of RLD and TXT card images
for 40
object-time use of 39,108

INDEX

Basic sequential access method
corpile-time use of 7
okject-time use of 109
Batch compilations
processing of 17,21
BLDL macro-instruction
compile-time use of 24,91
BLDL tatle
ccnstruction of 24,91
format of 91
in performance module 20
use of 91
Block/deblock I/0 buffers
allocation of main storage for 22-23
use of 19
Blocking table
ccnstruction of 23-24,91
forrat of 91
in performance module 20
use of 91
Bound variable
definition of 36
subscript ortimization processing of
36-37
Branch list takle for referenced statement
nunkers
allocation cf storage for 28-29
fcrmat of 107
generation cf 28-29
okject-time use of 107
Branch list takle for statement function
expansions and DO statements
allocation cf storage for 35
format of 107
generation of 39
cbject-time use of 107
BSAM
(see kasic sequential access method)
BSP macro-instruction
object-time use of 125
Buffers
compile-time use of 11,18,137,143
for blocked I/0 19,22-23
object-time use of 123-125
Build takle
(see BLDL table)

CALL statement
compile-time processing of 32,135,144

Card image generation 13,29-30,35,37-38,40

Card images

END 13,40

ESC 13,29,35

RID 13,29,35,40

TXT 13,29-30,35,38,40
CDL

calculation of 106

definition of 105

generation of literals for 36
Chain address field

in dictionary 84

in cverflow table 87-88

Index 151

Chaining scanning of 143

in dictionary 81-83 CONTINUE statement
in overflow takle 86-88 compile-time processing of 135
CHECK macro-instruction Control block, data
compile~-time use of 44 (see data control klock)
okject-time use of 116,124-125 control block, data event
Classification scan (see data event control block)
of source statements 143-144 Controcl codes
CLOSE macro-instruction (see format codes)
compile-time use of 15-16,21,74-75 Ccntrol flow
okject-time use of 125 for PRFRM ccrpilaticns 9-10
CLOSE macro-instruction, tyge=T fcr SPACE ccmpilaticns 9-10
ccmpile-time use cof 44,130 Control cperations routine
Comments card image definition of 18
scanning of 133 in interface module 18,44
COMMCN intermediate text Cconversion
creation of 24 cf I/0 list iterms 110,112
format of 96 of source statements 24,26,92
COMMCN statement Conversicn codes
compile~-time processing of (see format codes)
24-25,27-28,135 Conversion routines
Communication area in IHCFCOME 110,112
definition of 9 Counter, location
format of 140-142 relative address assignment use of 28
in interface module 17-18
Compilation DABS in-line function
data sets used for 11-12 compile-time processing of 33-34
PRFRM 9 Data control blocks
SPACE 9 compile-time manipulation of
Compilation input 15-16,20-21,42,73-75,130
deblocking of 19 ckject-time use of 121,123-126
Compilation output Data control klock skeleton section
blocking of 19 in unit blocks 122-123
Compiler Data definition (DD) statement 7,121
components of 7-8,13-16 Data event control block
control flow in 9-10 comrile~-time use of 18
data sets used by 11-12 object-time use of 123
input/output requests of 7,130-131 Data event control block skeleton section
input to 11-12 in unit blocks 122-123
main storage allcocation to Data flow
22-23,78,137-139 compiler detail 12
organization of 7 ccrpiler overall 11
output from 11-13 Phase 10D 25
relation to operating system 7 Phase 10E 26
system macro-instructions used by 7 Phase 12 27
tables used by 76-80,81-91 Phase 14 30
Compile-time I/O errors Phase 15 32
processing of 44 Phase 20 35
Computation Phase 25 38
array displacement 104-106 Phase 30 40
subscript 34-36 Data set reference nurkers
Computed GO TO statement compile-time processing of 26,29,30,81
compile-time processing of chject-time creation of unit blocks for
31,35,39,99,135 122
Constants Data sets
address 13 for compiler input 11-12
assignment of relative addresses to for compiler output 11-12
27-28 manipulation of data control blocks for
dictionary entries for 26 73-75
double-precision 28 ohject-time initialization of 123-124
Construction of resident tables DBLE in-line function
BLDL table 24 compile-time processing of 33
blocking table 23-24 DCB
dictionary 23,25-26,81-83 (see data ccntrol klock)
overflow table 23,25-26,86 DCB skeleton section
patch table 23,90 (see data ccntrol klock skeleton
SEGMAL 23,88-89 section)
Continuation card image DECB

152

(see data event control block)
DECB skeleton section
(see data event control block skeleton
section)
DECK option
compiler output for 11
Declarative statements
definition of 24
intermediate text for
Default values
for compiler options 17
okject-time insertion of into DCB

24,92

skeletons 122-123
system generation srecification of
17,142

DELETE macro-instruction
ccempile-time use of 21
Delete routine
in Phase 7 21,46
Device manipulation
okbject-time routines for
DFLOAT in-line function
compile-time processing of
Diagnostic messages
compiler informative 132
error/warning 132-134
generation of 40
Dictionary
chaining in 81-82
definition of 9
entry format 83
freeing of main storage for
index 82
organization of 81
Dictionary pointers
replacement of
Dimension entry
in overflow table 87
Dimension information
array displacement use of 104-106
Dimension part 104-106
Dimension section 104-106
DIMENSION statement
ccmpile-time. processing of
Displacement
base 27-28
in arrays 104-106
Displacement tables
(see routine displacement tables)
DO statement
compile-time processing of
31,34-36,39,135
Double argument in-line functions
compile-time processing of 33-34
Double-precision ccnstants
assignment of relative addresses for 28
DOUBLE PRECISION statement
compile-time processing of
DSRN
(see data set reference number)
Dummy sukscripted variables
subscript optimization processing of 36

115-116,119

33-34

56,81

31,97

24,135

24,135

Editor

(see linkage editor)
Element

in arrays
END card image

104-106

generation of 40
in object module 13
End DO adjective ccde
insertion of into intermediate text
31,98
ENDFIIE statement
ccrrpile-time processing of 31,135
ckject-time imgplementation of 115,119
End mark
in intermediate text 33,93
End-cf-FORMAT-statement indicator
object-time encounter of 110,112
End-cf-logical-reccrd indicator
okject-time encounter of 113
End-of-object rodule indicator
generation of 40
in object mcdule 13
End-of-phase requests
compile-time processing of
7,18,44,130-131
End-cf-phase routine
in interface module
in performance module
End-cf-statement indicator
(see end mark)
END statement
ccmpile-time processing of
Eprilecg table
generation of 38
format of 80
use of 80
EQUIVALENCE class 28
EQUIVALENCE group 28
EQUIVALENCE intermediate text
creation of 24
fcrrmat of 96
EQUIVALENCE root 28
EQUIVALENCE statement
ccrrpile-time processing of
EQUIVALENCE table 77-78
Error intermediate text entry
generation of 25-26,34,144-145
Errcr messages
compile-time generation of 40,132-134
object-time generation of 116,127
Error recovery procedures, I/0
corrpile-time 44
ckject-time 127
Errcrs, source statement
intermediate text for 25-26,34,144-145
messages for 40,132-134
ESD
(see external symbol dictionary)
ESD card images
generation of 13,29,35
in object module 13
Executable statements
definition of 24
generation of intermediate text for
25-26,92
Execute (EXEC) statement 7,17,19
External functions
(see library subprcgrams)
External references
generation cf ESD and RLD card images
for 29,35
EXTERNAL statement

18,40
20,45

40,135

24,28,135

Index 153

compile-time grocessing of 24,135
External symbol dictionary 13
Files

(see data sets)
FLOAT in-line function

compile-time processing of 33-34

Flush requests
definition of 19
performance module processing of
Forcing value
definition of 32
use of 32-33
Forcing value table 78
Format codes
compile-time processing of 30,58
okject-time processing of 110-112
FORMAT intermediate text
format of 95
genexration of
FORMAT statement
compile-time processing of
24-25,30,58,135
okject-time processing of 110-112
FREEMAIN macro-instruction
compile-time use of 21-23
FREEPOOL macro-instruction
okject-time use of 125
Function calls

21,45

24,25,92

compile-time processing of 32-34,135
FUNCTION statement
compile-time processing of 24,38,135

GETMAIN macro-instruction
compile-time use of 22-23,88
okject-time use of 122

GO TO statement
compile~time processing of 31,37,39,135

Hierarchy of operators 32,78,101-102

IABS in-line function

compile-time prccessing of 33-34
IF statement
compile-time processing of
32,34,36,39,135,144
error checking for 34
intermediate text for 93
IFIX in-line function
compile-time processing of 33-34

IHCCGOTO library subprogram 35
IHCFCOME library subprogram
closing section of 113
format scan of 110-112
function of 109
generation of calling sequences to 109
I/0 device manipulation routines of 115
I/0 list section of 110,112-113
opening section of 109-110
overall logic of 117
reads/write routines of 109-115
utility routines of 116
write-to-operator routines of 115-116
IHCFIOSH library subprogram
buffering scheme of 123
closing section of 125
communication with control program 123
device manipulation section of 125

154

functions of 121
initialization section of 123-124
I/0 error processing of 125,127
cverall logic of 126
read section of 124
routines of 128
takle and blocks used in 121-123
write section of 124-125
THCIRBRERR
functions of 128
generation cf calling sequences to 35
cverall logic of 129
Irages
(see card imrages)
Inmediate DO parameter
insertion of into intermediate text
98,146
Irplied DOs
checking of READ/WRITE statements for
31,98
insertion of adjective codes
Index
in dictionary
in overflow table
Index mapping table
format of 79
use of 38,79
In-line functicns
ccompile-time prccessing of
33-34,101,135
Input/output buffers
(see kuffers)
Input/output data sets
(see data sets)
Instruction generation 38
Integer constants
assignment of relative addresses to 27
INTEGER statement
compile-time processing of 24,135
Interface module
conponents of 17-18,44
functions of 7
linkages to 130-131
loaded into main storage 17

31,98

23,81-82
23,81,86

Interface module routines 18,44
Interlude

definition of 9
Interlude 10E

functions of 15
Interlude 1U

functions of 15
Interlude 15

functions of 16
Intermediate text

adjective code field 92-93

COMMON intermediate text 96
creation of 24,26,92
definition of 9
EQUIVALENCE intermediate text 96
FORMAT intermediate text 95
modestype code field 93
modification of 32-33,97-103
pointer field 93
reordering of 32-33,101-102
sukscript intermediate text 95,102-103
use of 9

Internal statement numker

compiler assigning of 93,128,143

Internal text
(see intermediate text)
Interruptions, arithmetic
okject-time processing of 116
170 error recovery procedure
compile-time 44
okject-time 127
I70 list items

object-time processing of 110-112
I/0 requests
compile-time processing of
7.18,44,130-131
170 routine
in interface module 18,44
in performance module 19-20,45

I/0 statements

okject-time implementation of 109-127
ISN

(see internal statement number)

Job (JOB) statement 7

Library exponentiation subprograms
assignment of registers for 33
generation of ESD card images for 35

Library subprograms
generation of ESD card images for
IHCCGOTO 35
IHCFCCME 109-120
IHCFIOSH 121-127
IHCIBERR 128-129

Linkage editor
processing of the object module 13

Linkage parameters 129

Linkages to interface module 7,130-131

Linkages to performance module 132

List items
(see I/0 list itemns)

Literals
generation of 36
generation of TXT and RLD card images

for 35

LOAD macro-instruction
compile-time use of 17,19-20

LOAD option
compiler output for 11-12

Loading modules 17,19-20,37

Location counter
used in assigning relative addresses 28

29,35

Machine language instructions

generation of 37-38
Macro-instructions

(see system macro-instructions)
Main storage allocation

for kranch list tables 29,35

for compiler 22-23,137-139
Manipulation

of compile-time data sets

of okject-time I/0 devices
MAP option

compiler output for 11-12
Mask, program interrupt

okject-time setting of 116
Message address takle 80
Message length table 80
Message text table 80
Messages

73-75
115,125

compile-time generation of 40,132-134

object-time generation of 116,128
Modestype field

in dictionary 84

in intermediate text 93
Modification of compiler modules 18
Modification of intermediate text

for arithretic expressions 32-34,97-103

for computed GO TO statements 99

focr READ/WRITE statements 98

fcr RETURN statements 99

NOLCAD option 10,35,40
Nonexecutable statements
(see declarative statements)

Object listing facility
enabling of 19
Okject listing module 19
Object listing option
compiler cutput for 11
ccwpiler processing for
Object module
cormponents of 13
creation of 13
Okject module instructions
generation of 37-38
Object module tables 107-108
Object program
(see object mwodule)
Okject-time error messages
generation of 116,128
Object-time I/0 errors
prccessing of 125,127
Offset
ccrputation of 26,104-106
generation of literal for 36
l1-dimensional array
array displacement computation of
104-106
overflow takle entry for 87
Opening
of data control blocks at compile-time
20-21,73-75
of data control blocks at cobject-time
123-124
OPEN macro-instruction
corpile-time use of 20-21,73-75
ckject-time use of 11¢,123-124
Operands
scurce staterment scan of 144-145
Operations table
format of 79
use of 78
Operators
scurce statement scan of 144-145
Optimization, subscript 34-36
overflow table
chaining in 86
definition of 9
entry formats in 87-88
index for 23,81,86
organization of 86

19,27,37

Patch facility
enabling of 23
Patch requests
compile=time processing of 18,44,131

Index 155

Patch routine
functions of 18
in interface module

Patch table
format of 90
use of 18,90

PAUSE statement
compile~time processing of 31,136
okject-time implementation of 116

Performance module
components of 19-20
functions of 19
linkages to 131
lcaded into main storage 19

Performance module routines 19-20

Performance module tables 20,91

Pointer field
in intermediate text 93

Preliminary scan
of source statements 143

PRFRM compilations
blocking compiler output for 19
control flow for 9-10
data control block manipulation for

73,75
deblocking compiler input for 19
linkages to performance module for 131
main storage allocation for 22-23,139
obtaining main storage for 21-22,139
opening data control blocks for 20
restart condition for 21,23

Print buffer module
functions of 19
loaded into main storage 19
used in source statement scan 143

Print control operation requests
compile-time processing of 18,131

18,44

READ macro-instruction
compile-time use of 7,44,73-75
okject-time use of 110-112,124,126
READ statement
compile-time processing of
30-31,36,92,98,136,146
okject~time implementation of
109-114,118,123-124,126
Real constants
assignment of relative addresses for 27
dictionary chain for 81
REAL statement
compile-time processing of
Recovery procedure, I/O errox
ccmpile-time 44
okject-time 125,127
Redefinition of integer variables
in subscript expressions 36-37
Referenced statement numbers
branch list table for 107
References, external

24,136

generation of ESD card images for 29,35
Registers

assignment of 33-34,100-101

base 27-28,39

Relative addresses
assignment of 27-28

Relocation dictionary 13

Removing entries from chains
in dictionary 83

156

Recrdering of intermediate text

for arithretic expressions

32-33,101-102

for computed GO TO statements 31,99

fcr READ/WRITE statements 30-31,92,98
Replacement of dictionary pointers 31,97
Reserved word

dictionary section 23,76,81

scurce statement scan 144-145
Reserved word scan

cf source statements
Resident tables

BLDL table 20,24,91

blocking takle 20,23-24,91

dictionary 81-85

overflow tabkle 81,86-88

patch table 90

SEGMAL 81,88-89
Resident table construction

BIDL table 24

blccking table 23-24

dictionary 23,25-26

overflow takle 23,25-26

patch table 18

SEGMAL 23
Restart condition

definition of 21

processing for 21,23
RETURN macro-instructicn

compile~-time use of 7,10
RETURN statement

ccmpile-time processing of
REWIND statement

compile-time processing of

okject-time implementation
RLD

(see relocation dictionary)
RLD card images

generation of 29,35,40
Routine displacement tables

format of 77

use of 76

144-145

31,38,99,136

31,136
115,119,125

SAOP adjective code

in intermediate text 102
Scan

of source statements
SEGMAL

censtruction of 23

fcrmat of 89

use of 88
SF

(see statement functions)
Single-argument in-line functions

conmrpile-time processing of 33-34
SNGL in-line function

compile-time processing of 33
Source module

input to corpiler 11-12
Source module listing 11-12,24,26
SOURCE ortion

compiler output for
Source program

(see source module)
Source statement scan 143-146
Source symbol rodule 19
SPACE compilations

control flow for

143-145

11-12

9-10

data control blcck manipulation for
73-74
linkages to interface module for
130-131
main storage allocation for
oktaining main storage for
21-22,137-138
orpening data control blocks for
20,73-74
SPIE macro-instruction
okject-time use of 116
Statement function numbers
assignment of 31
Statement functions
compile-time processing of
26,31,32,39,108,135
Statement number definitions

22,137-138

compile-time processing of 39,135
Statement numbers
overflow table entries for 25-26,88

Statement processing, compile-time
BACKSPACE 31,135
CALL 32,135,144
COMMON 24-25,27-28,135
CCNTINUE 135
DIMENSION 24,135
DO 31,34-36,39,135
DOUBLE-PRECISION 24,135
END 40,135
ENDFILE 31,135
ECUIVALENCE 24,28,135
EXTERNAL 24,135
FORMAT 24-25,30,58,135
FUNCTION 24,38,135
Gec TO 31,37,39,135
IF 32,34,36,39,135,144
INTEGER 24,135
PAUSE 31,136
READ 30-31,36,92,98,136,146
REAL 24,136
RETURN 31,38,99,136
REWIND 31,136
STOP 31,136
SUBROUTINE 24,136
WRITE 30-31,92,98,136
Statement processing, object-time
BACKSPACE 115,125
ENDFILE 115,119
FORMAT 110-112,
PAUSE 116
READ 109-114,118,123-124,126
REWIND 115,119,125
STOP 115-116,119
WRITE 109-115,118,123-126
STOP statement
compile-time processing of 31,136
object-time implementation of
115-116,119
Storage allocation
(see main storage allocation)
Storage allocation schematics
for PRFRM compilations 139
for SPACE compilations 137-138
Storage map
for assigned relative addresses 27
for generated literals 35
for implied external references 35
for referenced statement numbers 37

Subrrograms
address constants for 13
argument lists for 37
erilog table for 38,80
ESD card images for 29,35
SUBRCUTINE statement
corrpile-time processing of
Subscript expressions
computation of 104-106
ortimization of 34-36
overflow takle entries for
Sukscript intermediate text
ACP adjective code 103
SACP adjective code 102-103
XOP adjective code 103
Subscript optimization
statements subject to
statements that affect
Subscript table 79
Symbols
assignment cf addresses for 27
dictionary entries for 25
validity check for 30-31
SYSIN
input data set for compiler 11-12
manipulation of 26,73-75
orening of data control block for
19,73-75
SYSILIN
manipulation of 26,73-75
cutput data set for compiler
SYSPRINT
manipulation of 26,73-75
opening of data control block for

24,136

87-88

34-36,66
36-37,66

11-12

19,73-75
cutput data set for compiler 11-12
SYSPUNCH
manipulation of 73-7S
output data set for compiler 11-12

System macro-instructicns
used ky comgpiler 7
SYSUT1
manipulation of 26,73-75
orening of data control block for
19,73-75
overlaying cf DCB klock size for 18
work data set for compiler 11-12
SYSUT2
manipulation of 73-75
orening of data control block for 19
overlaying of DCB klock size for 18
work data set for compiler 11-12

Tables
allocation 76
argument list 108
kase value 108
BIDL 91
klocking 91
branch 1list 107
dictionary 81-85
epilog 80
equivalence 77-78
forcing value 78
index mapping 79
message address 80
message length 80
message text 80

Index 157

Y28-6601-1

orerations 78-79
overflow 81,86-88
patch 90
resident 81-91
routine displacement 76-77
SEGMAL 88-89
subscript 79
unit assignment 121-122
used by compiler 76-80
used by object module 107-108
Termination of ccmpilation
aknormal 44
normal 21,44
Termination of load module execution
116,127-128
Text
(see intermediate text)
3-dimensional array
array displacement corputation of
104-106
overflow table entry for 87
TXT card image
generation of 29-30,35,38,40
in object module 13
2-dimensional array
array displacement computation of
104-106
overflow table entry for 87

Unit assignment table 121
Unit blocks
construction of 122
format of 122
sections 122-123
use of 121-122
Unit number
(see data set reference number)

TSIV

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York 10601

Unit tables
(see unit blocks)

Variakles
assignment of relative addresses for
dictionary entries for 25-26
sukscripted 32-33,36-37,79,87-88,95

Warning
definition of 145
Warning messages
generation cf u0,92,145
Work data sets
for compiler 11-12
WRITE macro-instruction
cernpile-time use of 7,44,73-75
cbject-time use of 111-113,126
WRITE statement
corpile-time processing of
30-31,92,98,136
ckject-time implementation of
109-115,118,123-126
reordering of intermediate text for
92,98
Write-to-operator routines 115-116,119
WTC mracrc-instruction
okject-time use of 116

XCTL macro-instruction

ccrpile-time use of 7,18-19,44-45
XOP adjective code

in intermediate text 102

Zero-addressing scheme

used in array displacement computation

104-106

27

*¥°S°N UT Pa3uUTId

T-1099-8Z&

CUT ALONG LINE

READER'S COMMENTS

Title: IBM System/360 Operating System Form: Y28-6601-1
FORTRAN IV (E)
Program Logic Manual

Is the material: Yes No

Easy to Read? — _—

Well organized? —_— —_—

Complete? - -

Well illustrated? _— S

Accurate? - —_—

Suitable for its intended audience? —_— —_
How did you use this publication?

___As an introduction to the subject ___ For additional knowledge

Other fold

Please check the items that describe your position:

-—— Customer personnel ——Operator ___Sales Representative

— IBM personnel — Programmer _.Systems Engineer

— Manager ——Customer Engineer —Trainee

— Systems Analyst —_Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
__ _Clarification on page(s)
—— Addition on page(s)
— Deletion on page(s)
___Error on page(s)

Explanation:

fold

Name
Company
Address
City
State Zip Code

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

Y28-6601-1

staple
fold ﬁoﬂa
T 1
| FIRST CLASS i
| PERMIT NO. 81 |
| |
| POUGHKEEPSIE, N.Y. |
L J
r 1
| BUSINESS REPLY MAIL |
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
L . RERRR
NRRRR
POSTAGE WILL BE PAID BY
NERRN
IBM CORPORATION
P.0. BOX 390 TIERY
POUGHKEEPSIE, Ne. Y. 12602
RERRR
)
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS RERER §
DEPT. D58 o
RENRE a
] &
fold a fold
®
'
(o]
N
[o 0]
]
(=)
[«)}
(]
0
-

BN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601 staple

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	replyA
	replyB

